[1] Aktar, W., Sengupta, D., Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary toxicology, 2(1), 1-12.
[2] El Bakouri, H., Morillo, J., Usero, J., Ouassini, A. (2008). Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination. Journal of hydrology, 353(3-4), 335-342
[3] Benitez, F. J., Acero, J. L., Real, F. J. (2002). Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of hazardous materials, 89(1), 51-65.
[4] Bolong, N., Ismail, A., Salim, M. R., Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239(1-3), 229-246
[5] Lin, C.-H., Lerch, R. N., Goyne, K. W., Garrett, H. E. (2011). Reducing herbicides and veterinary antibiotics losses from agroecosystems using vegetative buffers. Journal of environmental quality, 40(3), 791-799.
[6] Zhang, Y., Hou, Y., Chen, F., Xiao, Z., Zhang, J., Hu, X. (2011). The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: effect of parameters and degradation pathway. Chemosphere, 82(8), 1109-1115.
[7] Cycoń, M., Wójcik, M., Piotrowska-Seget, Z. (2009). Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76(4), 494-501.
[8] Maldonado, M., Malato, S., Pérez-Estrada, L., Gernjak, W., Oller, I., Doménech, X., Peral, J. (2006). Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of hazardous materials, 138(2), 363-369.
[9] Wu, J., Lan, C., Chan, G. Y. S. (2009). Organophosphorus pesticide ozonation and formation of oxon intermediates. Chemosphere, 76(9), 1308-1314.minerals: preparation and optical properties. Microporous and mesoporous materials, 51(2),91-138.
[10] Wang, Q., Lemley, A. T. (2002). Oxidation of diazinon by anodic Fenton treatment. Water research, 36(13), 3237-3244.
[11] Shemer, H., Linden, K. G. (2006). Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment. Journal of hazardous materials, 136(3), 553-559.
[12] Daneshvar, N., Aber, S., Dorraji, M. S., Khataee, A., Rasoulifard, M. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and purification technology, 58(1), 91-98.
[13] Kouloumbos, V. N., Tsipi, D. F., Hiskia, A. E., Nikolic, D., van Breemen, R. B. (2003). Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry. Journal of the American society for mass spectrometry, 14(8), 803-817.
[14] Merabet, S., Bouzaza, A., Wolbert, D. (2009). Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process—Influence of some operating parameters. Journal of hazardous materials, 166(2-3), 1244-1249.
[15] Dražević, E., Košutić, K., Fingler, S., Drevenkar, V. (2011). Removal of pesticides from the water and their adsorption on the reverse osmosis membranes of defined porous structure. Desalination and water treatment, 30(1-3), 161-170.
[16] Plakas, K. V., Karabelas, A. J. (2012). Removal of pesticides from water by NF and RO membranes—A review. Desalination, 287, 255-265.
[17] Utami, W. N., Iqbal, R., Wenten, I. G. (2018). Rejection characteristics of organochlorine pesticides by low pressure reverse osmosis membrane. Jurnal air indonesia, 6(2), 103-108.
[18] Meister R.T., Berg G.L., Sine C., Meister R., Poplyk J. (1994). Farm chemicals handbook, 70th Eds., Meister Publishing Co., Willoughby, OH.
[19] EXTOXNE, T. (1996). Extension Toxicology Network-Pesticide Information Profiles. Copper sulfate.
[20] Hinden, H. (1969). Organic compounds removed by reverse osmosis. Water and sewage works, 116, 446-470.
[21] Chian, E. S., Bruce, W. N., Fang, H. H. (1975). Removal of pesticides by reverse osmosis. Environmental science and technology, 9(1), 52-59.
[22] Filteau, G., Moss, P. (1997). Ultra-low pressure RO membranes: an analysis of performance and cost. Desalination, 113(2-3), 147-152.
[23] Madsen, H. T., Søgaard, E. G. (2014). Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products. Separation and purification technology, 125, 111-119.
[24] Cui, Y., Ge, Q., Liu, X.-Y., Chung, T.-S. (2014). Novel forward osmosis process to effectively remove heavy metal ions. Journal of membrane science, 467, 188-194.
[25] Nematzadeh, M., Samimi, A., Shokrollahzadeh, S. (2016). Application of sodium bicarbonate as draw solution in forward osmosis desalination: influence of temperature and linear flow velocity. Desalination and water treatment, 57(44), 20784-20791.
[26] Gurrala, P. K., Regalla, S. P. (2014). DOE based parametric study of volumetric change of FDM parts. Procedia materials science, 6, 354-360.
[27] Kucera, J. (2019). Biofouling of polyamide membranes: Fouling mechanisms, current mitigation and cleaning strategies, and future prospects. Membranes, 9(9), 111.
[28] Genç, N., Doğan, E. C., Narcı, A. O., Bican, E. (2017). Multi‐Response Optimization of Process Parameters for Imidacloprid Removal by Reverse Osmosis Using Taguchi Design. Water environment research, 89(5), 440-450.
[29] Khanzada, N. K., Farid, M. U., Kharraz, J. A., Choi, J., Tang, C. Y., Nghiem, L. D., Jang, A., An, A. K. (2020). Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. Journal of membrane science, 598, 117672.
[30] Nghiem, L., Manis, A., Soldenhoff, K., Schäfer, A. (2004). Wastewater Treatment for Estrogenic Hormone Removal Using NF/RO Membranes. Journal of membrane science, 242(1-2), 37-45.
[31] Albergamo, V., Blankert, B., Cornelissen, E. R., Hofs, B., Knibbe, W.-J., van der Meer, W., de Voogt, P. (2019). Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water research, 148, 535-545.