[1] Hitam, C. N. C., Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of environmental management, 258, 110050.
[2] You, J., Guo, Y., Guo, R., Liu, X. (2020). A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chemical engineering journal, 373, 624-641.
[3] Liang, Q., Liu, X., Zeng, G., Liu, Z., Tang, L., Shao, B., Zeng, Z., Zhang, W., Liu, Y., Cheng, M., Tang, W., & Gong, Sh. (2019). Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application. Chemical engineering journal, 372, 429-451.
[4] Poole, Jr., Charles, P., Frank, J. (2005). Introduction to Nanotechnology. Journal of materials sciense technology, 395, 226-234.
[5] Ohno, K., Tanaka, M., Takeda, J., Kawazoe, Y. (2008). Nano-and Micromaterials. Materials letters, 9, 123-136.
[6] Wong, J. K. H., Tan, H. K., Lau, S. Y., Yap, P-S., Danquah, M. K. (2019). Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: A review. Journal of environmental chemical engineering, 7, 103261.
[7] Kurmi, B. D., Patel, P., Paliwal, R., Paliwal, S. R. (2020). Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of drug delivery science and technology, 57, 101682.
[8] Zhang, W., Zhang, D., Liang, Y. (2019). Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review. Environmental pollution, 247, 266-276.
[10]
Qian, Y.,
Yang, M.,
Zhang, F.,
Du, J.,
Li, K.,
Lin, X.,
Zhu, X.,
Lu, Y.,
Wang, W.,
Kang, D. J. (2018). A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO
3/TiO
2 photocatalysts.
Materials characterization,
142, 43-49.
[11]
Ma, R.,
Zhang, S.,
Wen, T.,
Gu, P.,
Li, L.,
Zhao, G.,
Niu, F.,
Huang, Q.,
Tang, Zh.,
Wang, X. (2019). A critical review on visible-light-response CeO
2-based photocatalysts with enhanced photooxidation of organic pollutants.
Catalysis today,
335, 20-30.
[12] Chaudhuri, R. G., Paria, S. (2012). Core-shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews, 112, 2373-2433.
[13] Channei, D., Inceesungvorn, B., Wetchakun, N., & Phanichphant, S. (2014). Synthesis of Fe3O4/SiO2/CeO2 Core–Shell magnetic and their application as photocatalyst. Journal of nanoparticle research, 14, 7756-7762.
[14] Girginova, P. I., Daniel-da-Silva, A. L., Lopes, C. B., Figueira, P., Otero, M., Amaral, V. S., Pereira, E., Trindade, T. (2010). Silica coated magnetite particles for magnetic removal of Hg 2+ from water. Journal of colloid and interface science, 345, 234-240.
[15] Panneerselvam, P., Morad, N., Tan, K. A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. Journal of imaging science and technology, 186, 160-168.
[16] Peng, Q., Liu, Y., Zeng, G., Xu, W., Yang, C., Zhang, J. (2010). Biosorption of copper (II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of imaging science and technology, 177, 676-682.
[17] Tajabadi, M., Khosroshahi, M. E. (2012). New finding on magnetite particle size reduction by changing temperature and alkaline media concentration. Advances in chemistry series, 3, 140-146.
[18] Mashkoor, F., Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials, 500, 166408.
[19] Wang, C.,
Li, J.,
Lv, X.,
Zhang Y.,
Guo, G. (2014). Photocatalytic organic pollutants degradation in metal-organicframeworks.
Energy and environmental. science. 25, 2831-2867.
[20] Zinatloo-Ajabshir, S., Salavati-Niasari, M. (2019). Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Composites part B: Engineering, 174, 106930.
[21] Long, Z., Li, Q., Wei, T., Zhang, G., Ren, Zh. (2020). Historical development and prospects of photocatalysts for pollutant removal in water. Journal of hazardous materials, 395, 122599.
[22] Channei, D., Inceesungvorn, B., Wetchakun, N., Phanichphant, S. (2014). Synthesis of Fe
3O
4/SiO
2/CeO
2 Core–Shell Magnetic and Their Application as Photocatalyst.
Journal of nanoscience and nanotechnology, 14, 7756-7762.
[23] Ehrampoosh, M., Moussavi, G. H., Ghaneian, M., Rahimi, S., Ahmadian, M. (2011). Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/UV-C photocatalytic process. Journal of environmental health, 8, 34-40.
[24] Joshi, K. M., Shrivastava, V. S. (2012). Removal of methylene blue dye aqueous solution using photocatalysis. Environmental technology, 2, 241-252.
[25] Kanakaraju, D., Mohamad Shahdad, R. N., Lim, Y-C., Pace, A. (2018). Magnetic hybrid TiO
2/Alg/FeNPs triads for the efficient removal of methylene blue from water.
Sustainable chemistry and pharmacy,
8, 50-62.
[26]
Saeed, M., Muneer, M., Akram, N., Haq, A.,
Afzal, N.,
Hamayun, M. (2019). Synthesis and characterization of silver loaded alumina and evaluation of its photo catalytic activity on photo degradation of methylene blue dye.
Chemical engineering research and design,
148, 218- 226.
[27]
Ashraf, G. A.,
Rasool, R. T.,
Hassan, M.,
Zhang, L. (2020). Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogenous catalyst magnetically detachable for methylene blue degradation.
Journal of alloys and compounds, 821, 153410.