[1] Kavanaugh, M. C. (2003). Unregulated and emerging chemical contaminants: technical and institutional challenges. Proceedings of the water environment federation, 2003(12), 1-19.
[2] Chayid, M. A., Ahmed M. J. (2015). Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies. Journal of environmental chemical engineering, 3(3), 1592-1601.
[3] Klavarioti, M., Mantzavinos, D., Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment international, 35(2), 402-417.
[4] Githinji, L. J., Musey, M. K., Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, air, and soil pollution, 219(1-4), 191-201.
[5] Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of environmental management, 92(3), 407-418.
[6] Amy, G., Kim, T. U., Yoon, J., Bellona, C., Drewes, J., Pellegrino, J., Heberer, T. (2005). Removal of micropollutants by NF/RO membranes. Water science and technology: Water supply, 5(5), 25-33.
[7] De Ridder, D. J. (2012). Adsorption of organic micropollutants onto activated carbon and zeolites, PhD dissertation, Delft University of Technology, Netherlands.
[8] Homem, V., Alves, A., Santos L. (2010). Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. International journal of environmental and analytical chemistry, 90(14-15), 1063-1084.
[9] Lin, S. H., Juang, R. S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of environmental management, 90(3), 1336-1349.
[10] Ahmad, A., Hameed B. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of hazardous materials, 175(1-3), 298-303.
[11] Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., Zou L. (2008). Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresource technology, 99(8), 2938-2946.
[12] Moussavi, G., Alahabadi, A., Yaghmaeian, K., Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical engineering journal, 217, 119-128.
[13] Yaghmaeian, K., Moussavi, G., Alahabadi, A. (2014). Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration. Chemical engineering journal, 236, 538-544.
[14] Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water research, 43(9), 2419-2430.
[15] Lima, D. R., Lima, E. C., Umpierres, C. S., Thue, P. S., El-Chaghaby, G. A., da Silva, R. S., Pavan, F. A., Dias, S. L., Biron, C. (2019). Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para. Environmental science and pollution research, 26(16), 16396-16408.
[16] Saucier, C., Karthickeyan, P., Ranjithkumar, V., Lima, E. C., Dos Reis, G. S., de Brum, I. A. (2017). Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environmental Science and pollution research, 24(6), 5918-5932.
[17] Limousy, L., Ghouma, I., Ouederni, A., Jeguirim, M. (2017). Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environmental science and pollution research, 24(11), 9993-10004.
[18] National Center for Biotechnology Information. PubChem Database. Amoxicillin, CID=33613, https://pubchem.ncbi.nlm.nih.gov/compound/Amoxicillin (accessed on Sep. 24, 2019).
[19] Al-Qodah, Z. Shawabkah, R. (2009). Production and characterization of granular activated carbon from activated sludge. Brazilian journal of chemical engineering, 26(1), 127-136.
[20] Attia, A. A., Rashwan, W. E., Khedr, S. A. (2006). Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment. Dyes and pigments, 69(3), 128-136.
[21] Ayawei, N., Ebelegi, A. N., Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017.
[22] Kajjumba, G. W., Emik, S., Öngen, A., Ozcan, K., Aydin, S., 2018. Modelling of adsorption kinetic processes—errors, theory and application, in Advanced sorption process applications, IntechOpen.
[23] Órfão, J., Silva, A., Pereira, J., Barata, S., Fonseca, I., Faria, P., Pereira, M. (2006). Adsorption of a reactive dye on chemically modified activated carbons—influence of pH. Journal of colloid and interface science, 296(2), 480-489.
[24] McCabe, W. L., Smith, J. C., Harriott, P., 2004. Unit operations of chemical engineering, 7th ed., McGraw-Hill, New York.
[25] Sotelo, J., Rodríguez, A., Álvarez, S., García, J. (2012). Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chemical engineering research and design, 90(7), 967-974.