[1] Aivalioti, M., Pothoulaki, D., Papoulias, P., Gidarakos, E. (2012). Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite. Journal of hazardous materials, 207, 136-146.
[2] World Health Organization. (2004). Guidelines for drinking-water quality: recommendations (Vol. 1). World Health Organization.
[3] Saha, D., Mirando, N., Levchenko, A. (2018). Liquid and vapor phase adsorption of BTX in lignin derived activated carbon: Equilibrium and kinetics study. Journal of cleaner production, 182, 372-378.
[4] Sangkhun, W., Laokiat, L., Tanboonchuy, V., Khamdahsag, P., Grisdanurak, N. (2012). Photocatalytic degradation of BTEX using W-doped TiO2 immobilized on fiberglass cloth under visible light. Superlattices and microstructures, 52(4), 632-642.
[5] Mazzeo, D. E. C., Levy, C. E., de Angelis, D. D. F., Marin-Morales, M. A. (2010). BTEX biodegradation by bacteria from effluents of petroleum refinery. Science of the total environment, 408(20), 4334-4340.
[6] Mathur, A. K., Balomajumder, C. (2013). Biological treatment and modeling aspect of BTEX abatement process in a biofilter. Bioresource technology, 142, 9-17
[7] Chovau, S., Dobrak, A., Figoli, A., Galiano, F., Simone, S., Drioli, E., Van der Bruggen, B. (2010). Pervaporation performance of unfilled and filled PDMS membranes and novel SBS membranes for the removal of toluene from diluted aqueous solutions. Chemical engineering journal, 159(1-3), 37-46.
[8] Mehrabi, N., Soleimani, M., Yeganeh, M. M., Sharififard, H. (2015). Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. RSC advances, 5(64), 51470-51482.
[9] Sharififard, H., Pepe, F., Soleimani, M., Aprea, P., Caputo, D. (2016). Iron-activated carbon nanocomposite: synthesis, characterization and application for lead removal from aqueous solution. RSC advances, 6(49), 42845-42853.
[10] Sharififard, H., Soleimani, M., Ashtiani, F. Z. (2014). Evaluation of chitosan flakes as adsorbent for palladium and platinum recovery from binary dilute solutions. International journal of global warming, 6(2-3), 303-314.
[11] Heydari, S., Sharififard, H., Nabavinia, M., Kiani, H., Parvizi, M. (2013). Adsorption of chromium ions from aqueous solution by carbon adsorbent. International journal of environmental, chemical, ecological, geological and geophysical engineering, 7(12), 649-652.
[12] Bansal, R. C., Goyal, M. (2005). Activated carbon adsorption. CRC press.
[13] Çeçen, F., Aktas, Ö. (2011). Activated carbon for water and wastewater treatment: Integration of adsorption and biological treatment. John Wiley and Sons.
[14] Bandosz, T. J. (2006). Activated carbon surfaces in environmental remediation (Vol. 7). Elsevier.
[15] Niazi, L., Lashanizadegan, A., Sharififard, H. (2018). Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. Journal of cleaner production, 185, 554-561.
[16] Shahraki, Z. H., Sharififard, H., Lashanizadegan, A. Grape stalks biomass as raw material for activated carbon production: Synthesis, characterization and adsorption ability. Materials research express, 5(5),
doi.org/10.1088/2053-1591/aac1cd.
[17] Demiral, H., Güngör, C. (2016). Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of cleaner production, 124, 103-113.
[18] Al Bahri, M., Calvo, L., Gilarranz, M. A., Rodriguez, J. J. (2016). Diuron multilayer adsorption on activated carbon from CO2 activation of grape seeds. Chemical engineering communications, 203(1), 103-113.
[19] Altintig, E., Kirkil, S. (2016). Preparation and properties of Ag-coated activated carbon nanocomposites produced from wild chestnut shell by ZnCl2 activation. Journal of the Taiwan institute of chemical engineers, 63, 180-188.
[20] Nowicki, P., Kazmierczak, J., Pietrzak, R. (2015). Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder technology, 269, 312-319.
[21] Chen, Y., Zhai, S. R., Liu, N., Song, Y., An, Q. D., Song, X. W. (2013). Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation. Bioresource technology, 144, 401-409.
[22] Lin, L., Zhai, S. R., Xiao, Z. Y., Song, Y., An, Q. D., Song, X. W. (2013). Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource technology, 136, 437-443.
[23] American Society for Testing and Materials. (1991). Standard Test Methods for Moisture in Activated Charcoal, ASTM Committee on Standards, Philadelphia.
[24] American Society for Testing and Materials. (2000). Designation D4607-94, ASTM Committee on Standards, Philadelphia.
[25] Kaghazchi, T., Kolur, N. A., Soleimani, M. (2010). Licorice residue and Pistachio-nut shell mixture: A promising precursor for activated carbon. Journal of industrial and engineering chemistry, 16(3), 368-374.
[26] Laksaci, H., Khelifi, A., Trari, M., Addoun, A. (2017). Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. Journal of cleaner production, 147, 254-262.
[27] Sharififard, H., Soleimani, M., Zokaee Ashtiani, F. (2016). Application of nanoscale iron oxide-hydroxide-impregnated activated carbon (Fe-AC) as an adsorbent for vanadium recovery from aqueous solutions. Desalination and water treatment, 57(33), 15714-15723.
[28] Badruzzaman, M., Westerhoff, P., Knappe, D. R. (2004). Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water research, 38(18), 4002-4012.
[29] Sharififard, H., Soleimani, M. (2017). Modeling and experimental study of vanadium adsorption by iron-nanoparticle-impregnated activated carbon.Research on chemical intermediates, 43(4), 2501-2516.
[30] Sellaoui, L., Guedidi, H., Knani, S., Reinert, L., Duclaux, L., Lamine, A. B. (2015). Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid phase equilibria, 387, 103-110
[31] Dotto, G. L., Pinto, L. A. A., Hachicha, M. A., Knani, S. (2015). New physicochemical interpretations for the adsorption of food dyes on chitosan films using statistical physics treatment. Food chemistry, 171, 1-7.
[32] Coquelet, C., Valtz, A., Richon, D. (2008). Solubility of ethylbenzene and xylene in pure water and aqueous alkanolamine solutions. The journal of chemical thermodynamics, 40(6), 942-948.
[33] Sellaoui, L., Mechi, N., Lima, É. C., Dotto, G. L., Lamine, A. B. (2017). Adsorption of diclofenac and nimesulide on activated carbon: statistical physics modeling and effect of adsorbate size. Journal of physics and chemistry of solids, 109, 117-123.
[34] Nunell, G. V., Fernández, M. E., Bonelli, P. R., Cukierman, A. L. (2012). Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass and bioenergy, 44, 87-95.
[35] da Silva Lacerda, V., López-Sotelo, J. B., Correa-Guimarães, A., Hernández-Navarro, S., Sánchez-Báscones, M., Navas-Gracia, L. M., Martín-Gil, J. (2015). Rhodamine B removal with activated carbons obtained from lignocellulosic waste. Journal of environmental management, 155, 67-76
[36] Lim, W. C., Srinivasakannan, C., Balasubramanian, N. (2010). Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. Journal of analytical and applied pyrolysis, 88(2), 181-186.
[37] Knani, S., Aouaini, F., Bahloul, N., Khalfaoui, M., Hachicha, M. A., Lamine, A. B., Kechaou, N. (2014). Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation. Physica A: Statistical mechanics and its applications, 400, 57-70.
[38] Khalfaoui, M., Baouab, M. H. V., Gauthier, R., Lamine, A. B. (2006). Acid dye adsorption onto cationized polyamide fibres. Modeling and consequent interpretations of model parameter behaviours. Journal of colloid and interface science, 296(2), 419-427.