[1] Farooq, U., Kozinski, J. A., Khan, M. A., Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents–A review of the recent literature. Bioresource technology, 101(14), 5043-5053.
[2] Asthana, A., Verma, R., Singh, A. K., Susan, M. A. B. H. (2016). Glycine functionalized magnetic nanoparticle entrapped calcium alginate beads: a promising adsorbent for removal of Cu (II) ions. Journal of environmental chemical engineering, 4(2), 1985-1995.
[3] Hao, Y. M., Man, C., Hu, Z. B. (2010). Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of hazardous materials, 184(1-3), 392-399.
[4] Zhou, Y. T., Nie, H. L., Branford-White, C., He, Z. Y., Zhu, L. M. (2009). Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Journal of colloid and interface science, 330(1), 29-37.
[5] Almohammadi, S., Mirzaei, M. (2016). Removal of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions. Advances in Environmental Technology, 2(2), 85-94.
[6] Vijayalakshmi, K., Gomathi, T., Latha, S., Hajeeth, T., Sudha, P. N. (2016). Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. International journal of biological macromolecules, 82, 440-452.
[7] Edition, F. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-8
[8] Badruddoza, A. Z. M., Tay, A. S. H., Tan, P. Y., Hidajat, K., Uddin, M. S. (2011). Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. Journal of hazardous materials, 185(2-3), 1177-1186.
[9] Song, J., Kong, H., Jang, J. (2011). Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. Journal of colloid and interface science, 359(2), 505-511.
[10] Khan, T. A., Singh, V. V. (2010). Removal of cadmium (II), lead (II), and chromium (VI) ions from aqueous solution using clay. Toxicological and environ chemistry, 92(8), 1435-1446.
[11] Ngah, W. W., Endud, C. S., Mayanar, R. (2002). Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and functional polymers, 50(2), 181-190
[12] Khan, T. A., Mukhlif, A. A., Khan, E. A., Sharma, D. K. (2016). Isotherm and kinetics modeling of Pb (II) and Cd (II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Modeling earth systems and environment, 2(3), 117.
[13] Khan, T. A., Nazir, M., Khan, E. A. (2016). Magnetically modified multiwalled carbon nanotubes for the adsorption of bismarck brown R and Cd (II) from aqueous solution: batch and column studies. Desalination and water treatment, 57(41), 19374-19390.
[14] Tonin, C., Aluigi, A., Varesano, A., Vineis, C. (2010). Keratin-based nanofibres. In Nanofibers. InTech.
[15] Aguayo-Villarreal, I. A., Bonilla-Petriciolet, A., Hernández-Montoya, V., Montes-Morán, M. A., Reynel-Avila, H. E. (2011). Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as sorbents. Chemical engineering journal, 167(1), 67-76.
[16] Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of hazardous materials, 133(1-3), 196-202.
[17] Khosa, M. A., Wu, J., Ullah, A. (2013). Chemical modification, characterization, and application of chicken feathers as novel biosorbents. Rsc Advances, 3(43), 20800-20810.
[18] Aluigi, A., Tonetti, C., Vineis, C., Tonin, C., Mazzuchetti, G. (2011). Adsorption of copper (II) ions by keratin/PA6 blend nanofibres. European polymer journal, 47(9), 1756-1764.
[19] Khosa, M. A., Ullah, A. (2014). In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. Journal of hazardous materials, 278, 360-371.
[20] Dutta, J. (2005). Nanotechnology in environmental protection and pollution. Science and technology of advanced materials, 6(3-4), 219.
[21] Nomura, Y., Aihara, M., Nakajima, D., Kenjou, S., Tsukuda, M., Tsuda, Y. (2007). U.S. Patent Application No. 10/594,758.
[22] Bertagnolli, C., Grishin, A., Vincent, T., Guibal, E. (2016). Recovering heavy metal ions from complex solutions using polyethylenimine derivatives encapsulated in alginate matrix. Industrial engineering chemistry research, 55(8), 2461-2470.
[23] Sheng, P. X., Ting, Y. P., Chen, J. P., Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of colloid and interface science, 275(1), 131-141.
[24] Gao, B., An, F., Liu, K. (2006). Studies on chelating adsorption properties of novel composite material polyethyleneimine/silica gel for heavy-metal ions. Applied surface science, 253(4), 1946-1952.
[25] Khosa, M. A., Ullah, A. (2014). In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. Journal of hazardous materials, 278, 360-371.
[26] Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids.Journal of the American chemical society, 38(11), 2221-2295.
[27] Freundlich, U. (1906). Uber die adsorption in lusungen. Zeitschrift für physikalische chemie, 57, 385-470.
[28] Redlich, O. J. D. L., Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024-1024.
[29] Sips, R. (1948). On the structure of a catalyst surface. The journal of chemical physics, 16(5), 490-495.
[30] Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39.
[31] Ho, Y. S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
[32] Weber, W. J., Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division, 89(2), 31-60.
[33] Stuart, B. (2005). Infrared spectroscopy. Kirk‐Othmer Encyclopedia of Chemical Technology. ACS Pub.
[34] Sun, P., Liu, Z. T., Liu, Z. W. (2009). Particles from bird feather: A novel application of an ionic liquid and waste resource. Journal of hazardous materials, 170(2-3), 786-790.
[35] Ha, S. W., Tonelli, A. E., Hudson, S. M. (2005). Structural studies of bombyx m ori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules, 6(3), 1722-1731.
[36] Shao, J., Zheng, J., Liu, J., Carr, C. M. (2005). Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin. Journal of applied polymer science, 96(6), 1999-2004.
[37] Xie, H., Li, S., Zhang, S. (2005). Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green chemistry, 7(8), 606-608.
[38] Cullity, B. D. (1978). Elements of X-ray diffraction, 2nd Ed., Addison-Wesley Pub. Co, USA.
[39] Rad, Z. P., Tavanai, H., Moradi, A. R. (2012). Production of feather keratin nanopowder through electrospraying. Journal of aerosol science, 51, 49-56.
[40] Eslahi, N., Dadashian, F., Nejad, N. H. (2013). Optimization of enzymatic hydrolysis of wool fibers for nanoparticles production using response surface methodology. Advanced powder technology, 24(1), 416-426.
[41] Saravanan, S., Sameera, D. K., Moorthi, A., Selvamurugan, N. (2013). Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. International journal of biological macromolecules, 62, 481-486.
[42] Xu, H., Shi, Z., Reddy, N., Yang, Y. (2014). Intrinsically water-stable keratin nanoparticles and their in vivo biodistribution for targeted delivery. Journal of agricultural and food chemistry, 2(37), 9145-9150.
[43] Mall, I. D., Srivastava, V. C., Agarwal, N. K. (2006). Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and pigments, 69(3), 210-223.
[44] Brown, P. A., Gill, S. A., Allen, S. J. (2000). Metal removal from wastewater using peat. Water research, 34(16), 3907-3916.
[45] Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of hazardous materials, 95(1-2), 137-152.
[46] Ki, C. S., Gang, E. H., Um, I. C., Park, Y. H. (2007). Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. Journal of membrane science, 302(1-2), 20-26.
[47] Das, D., Basak, G., Lakshmi, V., Das, N. (2012). Kinetics and equilibrium studies on removal of zinc (II) by untreated and anionic surfactant treated dead biomass of yeast: Batch and column mode. Biochemical engineering journal, 64, 30-47.
[48] Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American chemical society, 40(9), 1361-1403.
[49] Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water research, 120, 88-116.
[50] Belhachemi, M., Addoun, F. (2011). Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Applied water science, 1(3-4), 111-117.
[51] Al-Asheh, S., Banat, F. (2003). Beneficial reuse of chicken feathers in removal of heavy metals from wastewater. Journal of cleaner production, 11(3), 321-326.
[52] Kocabaş-Ataklı, Z. Ö., Yürüm, Y. (2013). Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chemical engineering journal, 225, 625-635.
[53] Chang, Y. C., Chen, D. H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. Journal of colloid and interface science, 283(2), 446-451.
[54] Banerjee, S. S., Chen, D. H. (2007). Fast removal of copper ions by gum Arabic modified magnetic nano-adsorbent. Journal of hazardous materials, 147(3), 792-799.
[55] Huang, S. H., Chen, D. H. (2009). Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. Journal of hazardous materials, 163(1), 174-179.
[56] Liu, J. F., Zhao, Z. S., Jiang, G. B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental science and technology, 42(18), 6949-6954.
[57] Guo, S., Jiao, P., Dan, Z., Duan, N., Chen, G., Zhang, J. (2017). Preparation of L-arginine modified magnetic adsorbent by one-step method for removal of Zn (Ⅱ) and Cd (Ⅱ) from aqueous solution. Chemical engineering journal, 317, 999-1011.