[1] Marimuthu, T., Rajendran, S., Manivannan, M. (2013). A review on bacterial degradation of textile dyes. Journal of chemical science, 3(3), 201-212.
[2] Molinari, R., Pirillo, F., Falco, M., Loddo, V., Palmisano, L. (2004). Photocatalytic degradation of dyes by using a membrane reactor. Chemical engineering and processing: process intensification, 43(9), 1103-1114.
[3] Robinson, T., McMullan, G., Marchant, R., Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology, 77(3), 247-255.
[4] Sobana, N., Swaminathan, M. (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and purification technology, 56(1), 101-107.
[5] Bisschops, I., Spanjers, H. (2003). Literature review on textile wastewater characterisation. Environmental technology, 24(11), 1399-1411.
[6] Vilar, V. J., Pinho, L. X., Pintor, A. M., Boaventura, R. A. (2011). Treatment of textile wastewaters by
solar-driven advanced oxidation processes. Solar energy, 85(9), 1927-1934.
[7] Keramati, N., Nasernejad, B., Fallah, N. (2014). Photocatalytic degradation of styrene in aqueous solution: central composite design optimization. Journal of dspersion science and technology, 35(11), 1543-1550.
[8] Fallah, N., Bonakdarpour, B., Nasernejad, B., Moghadam, M. A. (2010). Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT). Journal of hazardous materials, 178(1), 718-724.
[9] Sudarjanto, G., Keller-Lehmann, B., Keller, J. (2006). Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. Journal of hazardous materials, 138(1), 160-168.
[10] Sohrabi, M. R., Ghavami, M. (2008). Photocatalytic degradation of direct red 23 dye using UV/TiO2: effect of operational parameters. Journal of hazardous materials, 153(3), 1235-1239.
[11] Konstantinou, I. K., Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied catalysis B: environmental, 49(1), 1-14
[12] Asaithambi, P., Saravanathamizhan, R., Matheswaran, M. (2015). Comparison of treatment and energy efficiency of advanced oxidation processes for the distillery wastewater. International journal of environmental science and technology, 12(7), 2213-2220
[13] Pishkar, P., Aliabadi, M., Rezaian, S. (2014). Removal of ethylene dichloride from petro chemical wastewater using advanced oxidation processes (AOPS). Fresenius environmental bulletin, 23(7), 1479-1484.
[14] Divya, N., Bansal, A., Jana, A. K. (2013). Photocatalytic degradation of azo dye Orange II in aqueous solutions using copper-impregnated titania. International journal of environmental science and technology, 10(6), 1265-1274.
[15] Keramati, N., Nasernejad, B., Fallah, N. (2014). Synthesis of N-TiO2: stability and visible light activity for aqueous styrene degradation. Journal of dispersion science and technology, 35(10), 1476-1482.
[16] Ram, C., Pareek, R. K., Singh, V. (2012). Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst. International journal of theoretical applied sciences, 4(2), 82-88.
[17] Giri, R. R., Ozaki, H., Ota, S., Takanami, R., Taniguchi, S. (2010). Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques. International journal of environmental science and technology, 7(2), 251-260.
[18] Ghorbani, F., Younesi, H., Ghasempouri, S. M., Zinatizadeh, A. A., Amini, M., Daneshi, A. (2008). Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical engineering journal, 145(2), 267-275.
[19] Hazrati, H., Shayegan, J., Seyedi, S. M. (2015). Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture. Journal of environmental health science and engineering, 13(1), 72.
[20] Eckenfelder, W. W. (1989). Industrial water pollution control. McGraw-Hill.
[21] Cox, H. H. J., Moerman, R. E., Van Baalen, S., Van Heiningen, W. N. M., Doddema, H. J., Harder, W. (1997). Performance of a styrene‐degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnology and bioengineering, 53(3), 259-266.
[22] Trigueros, D. E., Módenes, A. N., Kroumov, A. D., Espinoza-Quiñones, F. R. (2010). Modeling of biodegradation process of BTEX compounds: Kinetic parameters estimation by using particle swarm global optimizer. Process biochemistry, 45(8), 1355-1361.
[23] Jung, I. G., Park, C. H. (2005). Characteristics of styrene degradation by Rhodococcus pyridinovorans isolated from a biofilter. Chemosphere, 61(4), 451-456.
[24] Trigueros, D. E., Módenes, A. N., Kroumov, A. D., Espinoza-Quiñones, F. R. (2010). Modeling of biodegradation process of BTEX compounds: Kinetic parameters estimation by using Particle Swarm Global Optimizer. Process biochemistry, 45(8), 1355-1361.