[1] Essadki, A. H., Bennajah, M., Gourich, B., Vial, C., Azzi, M., Delmas, H. (2008). Electrocoagulation /electroflotation in an external-loop airlift reactor—application to the decolorization of textile dye wastewater: a case study. Chemical engineering and processing: Process intensification, 47(8), 1211-1223.
[2] Daneshvar, N., Khataee, A. R., Ghadim, A. A., Rasoulifard, M. H. (2007). Decolorization of CI Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of hazardous materials, 148(3), 566-572.
[3] Wu, C. H., Chang, C. L. (2006). Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems. Journal of hazardous materials, 128(2), 265-272.
[4] Anjaneyulu, Y., Chary, N. S., Raj, D. S. S. (2005). Decolourization of industrial effluents–available methods and emerging technologies–a review. Reviews in environmental science and biotechnology, 4(4), 245-273.
[5] Saratale, R. G., Saratale, G. D., Chang, J. S., Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan institute of chemical engineers, 42(1), 138-157.
[6] Wu, C. H., Kuo, C. Y., Chang, C. L. (2007). Decolorization of azo dyes using catalytic ozonation. Reaction kinetics and catalysis letters, 91(1), 161-168.
[7] Golder, A. K., Hridaya, N., Samanta, A. N., Ray, S. (2005). Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes. Journal of hazardous materials, 127(1), 134-140.
[8] Do, J. S., Chen, M. L. (1994). Decolourization of dye-containing solutions by electrocoagulation. Journal of applied electrochemistry, 24(8), 785-790.
[9] Jiang, J. Q., Graham, N. J. D. (1996). Enhanced coagulation using Al/Fe (III) coagulants: effect of coagulant chemistry on the removal of colour-causing NOM. Environmental technology, 17(9), 937-950.
[10] Slokar, Y. M., Le Marechal, A. M. (1998). Methods of decoloration of textile wastewaters. Dyes and pigments, 37(4), 335-356.
[11] Li, G., Zhao, X. S., Ray, M. B. (2007). Advanced oxidation of orange II using TiO2 supported on porous adsorbents: The role of pH, H2O2 and O3. Separation and purification technology, 55(1), 91-97.
[12] He, Z., Lin, L., Song, S., Xia, M., Xu, L., Ying, H., Chen, J. (2008). Mineralization of CI reactive blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and purification technology, 62(2), 376-381.
[13] Sanches, S., Crespo, M. T. B., Pereira, V. J. (2010). Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water research, 44(6), 1809-1818.
[14] Gogate, P. R., Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in environmental research, 8(3), 501-551.
[15] Mohajerani, M., Mehrvar, M., Ein-Mozaffari, F. (2012). Using an external-loop airlift sonophotoreactor to enhance the biodegradability of aqueous sulfadiazine solution. Separation and purification technology, 90, 173-181.
[16] Lucas, M. S., Peres, J. A., Puma, G. L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Separation and purification technology, 72(3), 235-241.
[17] Beltran, F. J. (2003). Ozone reaction kinetics for water and wastewater systems. CRC Press.
[18] Khan, H., Ahmad, N., Yasar, A., Shahid, R. (2010). Advanced oxidative decolorization of Red Cl-5B: Effects of dye concentration, process optimization and reaction kinetics. Polish journal of environmental studies., 19(1), 83-92.
[19] Beltrán, F. J., Encinar, J., González, J. F. (1997). Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation. Water research, 31(10), 2415-2428.
[20] Alnaizy, R., Akgerman, A. (2000). Advanced oxidation of phenolic compounds. Advances in environmental research, 4(3), 233-244.
[21] Gimeno, O., Carbajo, M., Beltrán, F. J., Rivas, F. J. (2005). Phenol and substituted phenols AOPs remediation. Journal of hazardous materials, 119(1), 99-108.
[22] Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation, Water research, 36(4), 1034-1042.
[23] Shu, H. Y., Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H 2O2 processes. Dyes and pigments, 65(1), 25-31.
[24] Peternel, I., Koprivanac, N., Kusic, H. (2006). UV-based processes for reactive azo dye mineralization. Water research, 40(3), 525-532.
[25] Maran, J. P., Sivakumar, V., Sridhar, R., Immanuel, V. P. (2013). Development of model for mechanical properties of tapioca starch based edible films. Industrial crops and products, 42, 159-168.
[26] Maran, J. P., Sivakumar, V., Sridhar, R., Thirugnanasambandham, K. (2013). Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate polymers, 92(2), 1335-1347.
27] Maran, J. P., Manikandan, S., Nivetha, C. V., Dinesh, R. (2013). Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian journal of chemistry http://dx.doi.org/10/1016/j.arabjc.2013.002.007
[28] Hemmat, J., MazaheriAssadi, M. (2013). Optimization of reactive blue 19 biodegradation by Phanerochaetechrysosporium. International journal of environmental research, 7(4), 957-962.
[29] Berkani, M., Bouhelassa, M., Bouchareb, M. K. (2015). Implementation of a venturi photocatalytic reactor: Optimization of photodecolorization of an industrial azo dye. Arabian Journal of Chemistry, http://dx.doi.org/10.1016/j.arabjc.2015.07.004.
[30] Zobel, C. W., Cook, D. F. (2011). Evaluation of neural network variable influence measures for process control. Engineering applications of artificial intelligence, 24(5), 803-812.
[31] Alavala, C. R. (2007). Logic and Neural Networks: Basic concepts and applications. New Age. New Age Publications.
[32] Pilkington, J. L., Preston, C., Gomes, R. L. (2014). Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Industrial crops and products, 58, 15-24.
[33] Aber, S., Daneshvar, N., Soroureddin, S. M., Chabok, A., Asadpour-Zeynali, K. (2007). Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network. Desalination, 211(1), 87-95.
[34] Zarei, M., Khataee, A. R., Ordikhani-Seyedlar, R., Fathinia, M. (2010). Photoelectro-Fenton combined with photocatalytic process for degradation of an azo dye using supported TiO2 nanoparticles and carbon nanotube cathode: neural network modeling. Electrochimica Acta, 55(24), 7259-7265.
[35] Zarei, M., Niaei, A., Salari, D., Khataee, A. R. (2010). Removal of four dyes from aqueous medium by the peroxi-coagulation method using carbon nanotube–PTFE cathode and neural network modeling. Journal of electroanalytical chemistry, 639(1), 167-174.
[36] Cheok, C. Y., Chin, N. L., Yusof, Y. A., Talib, R. A., Law, C. L. (2012). Optimization of total phenolic content extracted from Garcinia mangostana Linn. Hull using response surface methodology versus artificial neural network. Industrial crops and products, 40, 247-253.
[37] Khajeh, M., Kaykhaii, M., Sharafi, A. (2013). Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples. Journal of industrial and engineering chemistry, 19(5), 1624-1630.
[38] Ebrahimzadeh, H., Tavassoli, N., Sadeghi, O., Amini, M. M. (2012). Optimization of solid-phase extraction using artificial neural networks and response surface methodology in combination with experimental design for determination of gold by atomic absorption spectrometry in industrial wastewater samples. Talanta, 97, 211-217.
[39] Khayet, M., Cojocaru, C. (2013). Artificial neural network model for desalination by sweeping gas membrane distillation. Desalination, 308, 102-110.
[40] Lakshminarayanan, A. K., Balasubramanian, V. (2009). Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Transactions of nonferrous metals society of China, 19(1), 9-18.
[41] Sinha, K., Saha, P. D., Datta, S. (2012). Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Industrial crops and products, 37(1), 408-414.
[42] Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., Sridhar, R. (2013). Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alexandria engineering journal, 52(3), 507-516.
[43] Yang, S. H., Chung, P. W. H., Brooks, B. W. (1999). Multi-stage modelling of a semi-batch polymerization reactor using artificial neural networks. Chemical engineering research and design, 77(8), 779-783.
[44] Bassam, A., Ortega-Toledo, D., Hernandez, J. A., Gonzalez-Rodriguez, J. G., Uruchurtu, J. (2009). Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel. Journal of solid state electrochemistry, 13(5), 773-780.
[45] Baughman, D. R., Liu, Y. A. (2014). Neural networks in bioprocessing and chemical engineering. Academic press.
[46] Kusic, H., Koprivanac, N., Bozic, A. L. (2006). Minimization of organic pollutant content in aqueous solution by means of AOPs: UV-and ozone-based technologies. Chemical engineering journal, 123(3), 127-137.
[47] Peternel, I., Koprivanac, N., Kusic, H. (2006). UV-based processes for reactive azo dye mineralization. Water research, 40(3), 525-532.
[48] Sevimli, M. F., Sarikaya, H. Z. (2002). Ozone treatment of textile effluents and dyes: effect of applied ozone dose, pH and dye concentration. Journal of chemical technology and biotechnology, 77(7), 842-850.
[49] Azbar, N., Yonar, T., Kestioglu, K. (2004). Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere, 55(1), 35-43.
[50] Sevimli, M. F., Sarikaya, H. Z. (2005). Effect of some operational parameters on the decolorization of textile effluents and dye solutions by ozonation. Environmental technology, 26(2), 135-144.
[51] Konsowa, A. H. (2003). Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 158(1), 233-240.
[52] Selcuk, H. (2005). Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and pigments, 64(3), 217-222.
[53] Aksu, Z. (2003). Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process biochemistry, 38(10), 1437-1444.
[54] Asad, S., Amoozegar, M. A., Pourbabaee, A., Sarbolouki, M. N., Dastgheib, S. M. M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource technology, 98(11), 2082-2088.
[55] Wu, J., Wang, T. (2001). Ozonation of aqueous azo dye in a semi-batch reactor. Water research, 35(4), 1093-1099.
[56] Wang, K. H., Hsieh, Y. H., Wu, C. H., Chang, C. Y. (2000). The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere, 40(4), 389-394.
[57] Zhang, H., Duan, L., Zhang, D. (2006). Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. Journal of hazardous materials, 138(1), 53-59.
[58] Yetilmezsoy, K., Demirel, S. (2008). Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. Journal of hazardous materials, 153(3), 1288-1300.
[59] Bingöl, D., Hercan, M., Elevli, S., Kılıç, E. (2012). Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresource technology, 112, 111-115.
[60] Bali, U., Çatalkaya, E., Şengül, F. (2004). Photodegradation of reactive black 5, direct red 28 and direct yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative study. Journal of hazardous materials, 114(1), 159-166.
[61] Wu, J., Wang, T. (2001). Ozonation of aqueous azo dye in a semi-batch reactor. Water research, 35(4), 1093-1099.
[62] Neamtu, M., Yediler, A., Siminiceanu, I., Kettrup, A. (2003). Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. Journal of photochemistry and photobiology A: Chemistry, 161(1), 87-93.
[63] Guendy, H. R. (2007). Ozone treatment of textile wastewater relevant to toxic effect elimination in marine environment. Egyptian journal of aquatic research, 33 (1), 98-115.
[64] Atchariyawut, S., Phattaranawik, J., Leiknes, T., Jiraratananon, R. (2009). Application of ozonation membrane contacting system for dye wastewater treatment. Separation and purification technology, 66(1), 153-158.