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 In this work, response surface methodology (RSM) and artificial neural network 
(ANN) were used to predict the decolorization efficiency of Reactive Red 33 (RR 33) 
by applying the O3/UV process in a bubble column reactor. The effects of four 
independent variables including time (20-60 min), superficial gas velocity (0.06-0.18 
cm/s), initial concentration of dye (50-150 ppm), and pH (3-11) were investigated 
using a 3-level 4-factor central composite experimental design. This design was 
utilized to train a feed-forward multilayered perceptron artificial neural network 
with a back-propagation algorithm. A comparison between the models’ results and 
experimental data gave high correlation coefficients and showed that the two 
models were able to predict Reactive Red 33 removal by employing the O3/UV 
process. Considering the results of the yield of dye removal and the response surface-
generated model, the optimum conditions for dye removal were found to be a 
retention time of 59.87 min, a superficial gas velocity of 0.18 cm/s, an initial 
concentration of 96.33 ppm, and a pH of 7.99. 
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1. Introduction 

Large amounts of chemicals (more than 10000 dyes) are 
used in the textile industry during the finishing and dying 
processes [1]. Azo dyes are environmentally hazardous 
materials due to their toxicity and slow degradation [2-4]. 
The treatment of azo dyes effluents to meet the stringent 
environmental regulations is necessary prior to their final 
discharge into the environment [5-7]. Different 
conventional methods consisting of various combinations of 
biological, physical and chemical methods have been used 
in order to deal with textile wastewater, but these methods 
are not as efficient as advanced oxidation processes (AOPs) 
[8-10]. AOPs are chemical methods based on the generation 
of high reactive hydroxyl radicals (OH°) that can oxidize the 
contaminants powerfully and non-selectively. A number of 
AOPs such as ozonation (O3), hydrogen peroxide (H2O2), 
O3/UV, O3/H2O2, O3/UV/H2O2, UV/TiO2, UV/ZnO and 
recently O3/Ultrasound (US) have been well studied [11-15].  

The combination of O3 with UV, which yields hydroxyl, 
peroxyl, and superoxide radicals, should synergistically 
accelerate the removal of organic matter from complex 
wastewater matrices [16]. As illustrated by Beltran [17] and 
Lucasa et al. [16], the O3/UV process was capable of 
oxidizing wastewater faster than O3 alone, showing a 
photochemical enhancement oxidation effect. This was 
principally due to the photolysis of ozone, the enhanced 
mass transfer of ozone, and the generation of hydroxyl 
radicals that reacted rapidly with the organic matter in the 
winery wastewater. Khan et al. [18] showed that the 
effectiveness of ozonation was enhanced by applying UV. 
Consequently, the reactant molecules were raised to a 
higher energy state and reacted more rapidly. Moreover, 
free radicals for use in the reaction were readily hydrolyzed 
by water. Another benefit of the combined use of ozone and 
UV was a substantial reduction in the amount of ozone 
required as compared to a system using O3 alone [18]. 
Several literatures also reported that by combining UV 
irradiation with O3, the oxidation power of the systems for 
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organic pollutant degradation could be significantly 
enhanced [19-24]. Response surface methodology (RSM) 
has been widely used in process and product improvement. 
It is efficiently used to examine and optimize the 
operational variables for experiment designing and model 
developing [25, 26]. RSM is typically used for mapping a 
response surface over a particular region of interest, 
optimizing the responses, and selecting operating 
conditions to achieve target specifications or consumer 
requirements [27]. The decolorization of reactive blue 19 
dye by Phanerochaete chrysosporium in an aqueous 
solution was optimized using the Box-Behnken design based 
on RSM [28]. Based on the central composite design (CCD), 
the optimization of the UV/TiO2 process in the photo-
reactor was carried out using RSM to assess the effects of 
the main independent parameters on the decolorization 
efficiency of the azo dye C.I. Basic Red 46 [29]. More 
recently, artificial neural networks (ANN) are increasingly 
used as predictive tools in an extensive range of disciplines, 
such as engineering, due to their ability to employ learning 
algorithms and discern input–output relationships for 
complex, nonlinear systems [30-32]. Some literature 
surveys have shown the application of AANs in water 
treatment that included the removal of acid orange 7 by 
activated carbon [33], basic Red 46 degradation using 
photoelectro-fenton combined with the photocatalytic 
process [34], and the removal of four different dyes from an 
aqueous medium by a peroxi-coagulation method using a 
carbon nanotube (CNT) cathode [35]. Nowadays, RSM and 
ANN approaches are applied for optimization and process 
modeling [36-41]. A comparison of the predictive and 
generalization capabilities, sensitivity analysis, and 
optimization abilities of ANN and RSM techniques revealed 
that the ANN model fit the data better and had a higher 
predictive capability than RSM, even with the limited 
number of experiments. 
Sinha et al. [41] used RSM and ANN modeling of microwave 
assisted natural dye extraction from pomegranate rind to 
optimize the effects of processing parameters and to get a 
good correlation between the input variables and the 
output parameter. Maran et al. [42] performed a 
comparative study between ANN and RSM to predict the 
mass transfer parameters of the osmotic dehydration of 
papaya. The results showed that the ANN model was more 
accurate in prediction as compared to the RSM model. The 
decolorization process of the dye was carried out by 
bubbling O3 in a bubble column reactor containing the dye 
solution. The gas flow ensured both the O3 (oxidant) supply 
and the efficient mixing (high mass transfer of ozone) 
without the need for mechanical mixing. The experiments 
were conducted using a batch bubble column to take 
advantage of the intensive back-mixing that prevailed in the 
bubble columns. The strong back-mixing reduced the mixing 
time between the reactants and accelerated the process of 
decolorization. In addition, the bubble columns were simple 

in their design and operated in the absence of mechanical 
moving parts. A reactor that provided the benefits of high 
efficiency, low energy input, and easy construction to 
improve decolorization efficiency was necessary. 
Decolorization in the bubble column photo-reactor had 
many advantages such as convenience, economy, safety 
and high efficiency and as a consequence, it can be 
considered a good prospect in future applications. The main 
motivation behind this study was the utilization the RSM 
and ANN methodologies for predicting the decolorization of 
Reactive Red 33 (RR 33) by the O3/UV process; the results 
obtained through RSM were then compared with those 
obtained through ANN. A number of experiments were 
carried out based on CCD to collect the output variable 
(decolorization efficiency) as a function of time, superficial 
gas velocity, initial concentration of dye, and pH. A feed-
forward neural network on back-propagation were 
developed utilizing the experimental data. 

2. Materials and methods 

Reactive Red 33 (C27H19ClN7Na3O11S3) was taken from the 
Boyakhsaz Company, Iran. The experimental setup 
consisted of a laboratory scale bubble column reactor that 
was 6.5 cm in diameter and 50 cm in height which was 
placed inside a photochemical chamber that contained four 
UVAB lamps (Narva, Germany) of 15 W. Each lamp was 
placed in a 90° angle to another. The diameter and length 
of each lamp was 2.5 mm and 45 cm, respectively. Figure 1 
shows a schematic of the set-up used for the experimental 
runs. The reactor was filled with 1 L of aqueous dye solution. 
An ozone-air mixture was continuously bubbled into the 
solution throughout a gas distributer that was placed at the 
bottom of the reactor. Ozone was generated in an ozone 
generator (Arda, France). The gas flow rate was monitored 
with a calibrated rotameter incorporated in the ozone 
generator. The ozone concentration was measured by the 
iodometry method (KI solution). Liquid samples of 5 mL 
were withdrawn by a pipette at specific intervals and then 
analyzed for dye concentration. The dye concentration was 
determined using a 2100-UV Spectrophotometer (Unico, 
USA) with a maximum absorption wavelength of 509 nm. 
The pH of the liquid solution was adjusted using H2SO4 (1 N) 
or NaOH (1 N). All experiments were carried out at a 
constant temperature of 25±2°C. The dye decolorization 
efficiency (Y) was calculated by the following equation: 

Y (%) = 1 −
CA

CAo

 (1) 

Where CA  is the concentration of dye (ppm) and CAo  is the 
initial concentration of dye (ppm). 
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Fig. 1. Experimental set-up and bubble column reactor 

2.1. Experimental design 

RSM was applied to the experimental data using statistical 
software, namely Design-expert V7 (trial version). Central 
composite design (CCD) in RSM was used to develop a 
response surface quadratic model for describing the dye 
decolorization process. The ranges and levels of variables 
investigated in the research including time, superficial gas 
velocity, initial dye concentration, and pH are given in Table 
1. Data from CCD were subjected to the following quadratic 
equation model to predict the system response and 
estimate the coefficients by the least-squares regression: 

Y = β0 + ∑ βiXi + ∑ βiiXi
2 + ∑ ∑ βijXiXj + e

k

j=2

k−1

i=1

k

i=1

k

i=1

 (2) 

Where Y is the predicted decolorization efficiency of RR 33; 
βo is the model intercept coefficient; βi, βii and βij are 
respectively the linear, quadratic and interaction 
coefficients; Xi and Xj are the independent variables; and e 
is the error. The statistical significance of each regression 
coefficient on the decolorization of RR33 was determined 
by analysis of variance (ANOVA). 

 
Table 1. Experimental variables and levels 

Variable Symbol Unit 
Low Middle High 

-1 0 1 

Time A min 20 40 60 

Superficial gas velocity B cm/s 0.06 0.12 0.18 

Initial dye concentration C ppm 50 100 150 

pH D - 3.0 7.0 11.0 

2.2. Artificial neural networks 

The Back Propagation Algorithm (BPA) was applied to train 
the neural network. The BPA modified network weights to 
minimize the MSE between the desired and the actual 
outputs of the network. A feed forward back propagation 
neural network with three layers was used. The layers of 
network contained an input layer, hidden layer and output 
layer. In the feed forward neural network, information 
flowed from input to output without feedback [43]. It had 
one hidden layer with a sigmoid transfer function followed  

 

by an output layer with a linear transfer function. Multiple 
layers of neurons with nonlinear transfer functions allowed 
the network to learn nonlinear and linear relationships 
between input and output vectors [44]. It has been reported 
that multilayer ANN models with only one hidden layer have 
universal applications [45]. The neural networks  
toolbox of Matlab 7.12.0 was used. Figure 2 illustrates ANN 
(4:n:1) for the modeling of the UV/O3 degradation process 
in which n is the number of neurons in the hidden layer. 
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Fig. 2. Conceptual structure of 3 layer ANN model 

3. Results and discussion 

3.1. RSM modeling 

According to the CCD, the experiments were performed in 
order to determine the optimum combination and study the 
effect of process variables on the decolorization efficiency 
of RR33. Table 2 depicts the four-factor, three-level CCD and 
the observed values for the RR33 decolorization efficiency 
by the developed quadratic model. The empirical 
relationships between the response and the four 
independent variables have been expressed in terms of unit 
less regression coefficient by the quadratic model and are 
given as: 

Y = 90.76 + 13.11 A − 4.92 B − 7.76 C + 3.78 D + 5.35 A.  B +
6.63 A. C − 3.01 A.  D − 0.45 B . C + 3.26 B . C − 0.29 C . D −
5.64 A2 − 1.47 B2 − 2.20 C2 − 0.84 D2  

(3) 

Without considering the sign of regression model 
coefficients for variables and interactions, the order of 
effectiveness of all variables and their binary interactions is 
as follows (higher model coefficient in absolute values): 

A > C > AC> A2 > AB > B > D > BC > AD > C2 > B2 > D2 > BC > CD 

Table 3 shows the results of the second-order response 
surface in the form of analysis of variance (ANOVA); the 
results indicated that the equation adequately represented 
the actual relationship between the independent variables 
and the responses. The positive or negative sign of model 
coefficient values described the direction of each variable 
or interaction effect on the response, i.e., positive values 
variables’ increment caused increases in decolorization 
yields while negative values variables’ increment caused a 
decrease in decolorization yield. Table 3 shows that the two 
main factors (A, D) and the three binary interaction effects 
(AB, AC, BC) had positive signs; all other effects (B, C, AD, 
BC, CD, A2, B2, C2, D2) had negative signs and a reverse 
effects on the responses. The ANOVA results (Table 3) for 
the O3/UV oxidation system shows the 
F-value to be 39.93, which implies that the terms in the 
model have a significant effect on the response. The linear 

terms were the four independent variables, which included 
A: time, B: superficial gas velocity, C: initial concentration of 
dye and D: pH with the largest effect on the response  
(p < 0.0001). The results suggested that the change of time, 
superficial gas velocity, initial concentration of dye, and pH 
had very significant effects on the efficiency of RR33 (p 
<0.0001) when O3/UV was used in the decolorization of dye. 
The model’s terms with a probability value larger than 0.05 
were not significant. The non-significant value of lack of fit 
(more than 0.05) showed that the quadratic model was 
valid for the present study. The goodness of fit of the model 
was examined by the determination of coefficient (R2= 
0.9739), which implied that the sample variation was 
97.39% statistically significant and only 0.03% of the total 
variance could not be explained by the model. The 
regression model coefficient value, e. g. 13.11, for the 
retention time (A) was the most significant value in 
comparison with other variables. Obviously, an increase in 
the time of the decolorization process can result in a higher 
decolorization yield. According to the statistical results, the 
retention time increased the comparable changes in the 
decolorization yield of RR33 more than the other process 
variables. The positive sign of the model coefficient for 
retention time indicated the proportional effect of this 
variable on the decolorization yield, i.e., increasing 
retention time will increase the response. The amount of 
the p-value for the retention time was less than 0.05 for a 
95% confident level. In order to analyze the regression 
equation of the model, three-dimensional (3D) surface and 
2D contour plots were obtained by plotting the response 
(decolorization efficiency) on the Z axis against any two 
variables while keeping the other variable at middle level. 
These plots were created to analyze the change in the 
response surface. The surface and contour plots of the 
quadratic model are shown in Figure 3 (a-f). The plots were 
approximately symmetrical in shape; the nonlinear nature 
of all 3D response surfaces showed considerable 
interactions between the independent variables and the 
RR33 decolorization as a response function. 
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Table 2. Coded central composite design of independent variables and their corresponding experimental values 

Run order A B C D Decolorization efficiency (Y) 

1 1 0 0 0 95.80 
2 0 1 0 0 85.70 

3 1 1 -1 -1 95.38 

4 0 0 0 -1 85.20 

5 0 0 0 0 86.40 

6 -1 -1 -1 1 94.10 

7 -1 -1 -1 -1 91.69 

8 1 -1 -1 -1 93.24 

9 -1 1 1 1 55.10 

10 -1 1 -1 -1 57.80 

11 1 -1 1 -1 94.20 

12 0 0 1 0 80.88 

13 -1 -1 1 -1 62.42 

14 1 -1 1 1 93.80 

15 0 0 0 0 92.60 

16 0 -1 0 0 91.34 

17 0 0 0 0 92.40 

18 1 -1 -1 1 94.20 

19 0 0 0 0 93.10 

20 -1 1 -1 1 84.00 

21 0 0 0 0 91.20 

22 1 1 1 1 92.90 

23 0 0 0 1 93.10 

24 1 1 -1 1 98.20 

25 -1 0 0 0 72.90 

26 0 0 0 0 93.50 

27 1 1 1 -1 90.29 

28 0 0 -1 0 94.70 

29 -1 -1 1 1 63.50 

30 -1 1 1 -1 30.60 

Table 3.  Analysis of variance (ANOVA) for RR 33 decolorization efficiency (%) 

Parameters 
Statistics     

Sum of squres Degree of freedom Mean square F-value P-value 

Model 6962.11 14 497.29 39.93 < 0.0001 
A: time 3091.60 1 3091.60 248.23 < 0.0001 

B: superficial gas velocity 435.32 1 435.32 34.95 < 0.0001 
C: initial concentration of dye 1082.99 1 1082.99 86.95 < 0.0001 

D:pH 257.49 1 257.49 20.67 0.0004 
AB 457.32 1 457.32 36.72 < 0.0001 
AC 704.11 1 704.11 56.53 < 0.0001 
AD 145.20 1 145.20 11.66 0.0038 
BC 3.22 1 3.22 0.26 0.6184 
BD 169.52 1 169.52 13.61 0.0022 
CD 1.32 1 1.32 0.11 0.7490 
A2 82.37 1 82.37 6.61 0.0213 
B2 5.59 1 5.59 0.45 0.5132 
C2 12.52 1 12.52 1.01 0.3319 
D2 1.82 1 1.82 0.15 0.7075 

Residuals 186.82 15 12.45   
Lack of fit 152.15 10 15.21 2.19 0.1996 
Pure error 34.67 5 6.93   

Total 7148.93 29    
R2: 0.9739      

Adjusted R2: 0.9495      
Adeqate Precision: 27.004      

C.V. % : 4.17 
Pred R-Squared: 0.8289 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 3. Response surface plots showing the effect of independent variables on decolorization of RR 33 

The AOP with UV irradiation and ozone was initiated by the 
photolysis of the ozone. The photo-decomposition of the 
ozone led to the formation of H2O2 in the following reaction: 

O3 + H2O + ℎ𝑣 → H2O2 + O2 (4) 

Consequently, the generation of two hydroxyl radicals 
occurred as a result of the following reaction: 

H2O2 + ℎ𝑣 → 2OH° (5) 
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This system contained three components to produce OH 
radicals and/or oxidize the pollutant for subsequent 
reactions: UV irradiation, ozone and hydrogen peroxide 
[46]. All degradation mechanisms should be taken into 
consideration: OH radical attack as predominant, direct 
ozone attack, direct photolysis of organics by UV irradiation, 
and direct oxidation by H2O2 [47]. 
Figure 3 (c, e and f) represents the influence of pH on the 
color removal efficiency of ozone. There was an increase in 
the removal efficiency with an increase in the pH of the dye 
solution [48-50]. Higher color removal efficiency at a pH of 
11 can best be explained by the fact that in a highly alkaline 
medium, the ozone dissociated to the hydroperoxide 
anions. The HO·radical was especially important in the 
decolorization process because of its high oxidation 
potential of 2.8 eV [51, 52]. The free radicals cleaved the 
conjugated bonds of the dye, resulting in decolorization. 
The pH tolerance was quite important because the reactive 
azo dyes bind to cotton fibers by the addition or substitution 
mechanisms under alkaline conditions and high 
temperatures [53, 54]. An increase in time enhanced the 
mass transfer, which resulted in increased ozone content in 
the liquid phase and an enhanced degradation rate constant 
[55]. Higher decolorization was achieved at low 
concentrations of RR33, as is shown in Figure 2 (b, d and f). 
It can be found that as the dye concentration increased, the 
decolorization rate constant decreased. Several studies 
have reported similar observations. The dye had a UV-
screening effect and hence a significant quantity of UV light 
may be absorbed by the high concentration of dye 
molecules which reduced decolorization efficiency. 
Moreover, there are more dyes and reaction intermediates 
that competed with the OH radicals in the high initial 
concentration  
[3, 56].From Figure 3(a, d, and e), it can be seen that the 
decolorization yield increased with the increase of 
superficial gas velocity. The increase in flow rate 
corresponded to a larger net surface area for the mass 
transfer of the ozone from the gas phase to the aqueous 
phase, and hence increased the volumetric mass transfer 
coefficient of the ozone. The concentration of the hydroxyl 
radicals increased with an increase in the ozone 
concentration. This resulted in a higher dye removal rate 
[57]. The optimum condition for the removal of RR33 was 
determined in order to obtain the maximum decolorization 
efficiency. In order to obtain maximum desirability, the 
decolorization efficiency was maximized while the 
independent variables were within range. The optimum 
condition was found to be a time of 59.87 min, a superficial 
gas velocity of 0.18 cm/s, an initial concentration of 96.33 
ppm, and a pH of 7.99, respectively, with an overall 

desirability value of 1. The decolorization efficiency of the 
dye under these optimum conditions was found to be 98.19 
and the experimental value was 99.10; the deviation of the 
experimental and theoretical results was found to be 0.92%. 
This indicated the suitability of the developed model. 

3.2. ANN modeling 

ANN methodology was performed to provide a nonlinear 
mapping between the input variables (time, superficial gas 
velocity, initial dye concentration and pH) and the output 
variable (decolorization efficiency) for the runs reported in 
Table 4. In order to increase the convergence speed and 
minimize the errors, the experimental data were 
normalized at {0 1} using a min-max formula: 

xn = (xi − xmin)/xmax − xmin (6) 

Where xn , xi, xmin and xmax are normalized, real, minimum, 
and maximum value, respectively. The deviations used for 
selecting the best ANN architecture were the mean square 
errors (MSE) and the absolute fraction of variance (R2) 
which can be defined as follows [58, 59]: 

MSE =
1

N
∑(ti − yi)

2

N

i=1

 

 
 
 
 

(7) 

R2 =
∑ (ti − tm

2N
i=1 − ∑ (ti − yi)

2)N
i=1

∑ (ti − yi)
2N

i=1

 
(8) 

Where N is the number of data points, t is the target 
(experimental) data, and y is the predicted value. The back 
propagation algorithm was applied for the network training 
as the most suitable algorithm. In order to determine the 
optimum number of neurons in the hidden layer, a series of 
topologies was examined. The different number of neurons 
in the range of 1-15 was tested in the hidden layer. 
According to Table 4, the network with 6 neurons in hidden 
layer had the best results of MSE (2.89×10-5) and R for both 
the training and testing data. As a result, in this study a 
three layered feed forward back propagation neural 
network (4:6:1) was used for the modeling of the 
decolorization process. The actual and predicted values by 
RSM and ANN are presented in  
Figure 4. The values of R2 for the ANN and RSM models were 
found to be 0.9739 and 0.9989, respectively. The ANN 
model was able to capture the nonlinearities of the 
experimental data better than the RSM model with a 
combined regression coefficient of 0.998 for RR33 
decolorization efficiency.  

 
 
 
 
 



 J. Behin et al. / Advances in Environmental Technology 1 (2016) 33-44 40 

 
 
Table 4. Detail results of the various investigated neural networks structure 

Model 
Structure 

 Training  Testing 

 MSE R  MSE R 

4:1:1  6.31×10-3 0.9718  1.45×10-2 0.9567 
4:2:1  3.47×10-3 0.9757  2.54×10-3 0.9341 
4:3:1  1.07×10-4 0.9976  4.33×10-2 0.9743 
4:4:1  5.06×10-4 0.9959  4.85×10-3 0.9711 
4:5:1  1.00×10-4 0.9990  1.34×10-3 0.9384 
4:6:1  2.89×10-5 0.9996  7.46×10-3 0.9989 
4:7:1  1.78×10-3 0.9851  3.85×10-3 0.9875 
4:8:1  5.28×10-4 0.9960  3.09×10-3 0.9640 
4:9:1  1.88×10-4 0.9986  2.36×10-2 0.9789 

4:10:1  3.79×10-4 0.9969  5.63×10-3 0.9290 
4:11:1  2.89×10-3 0.9920  1.34×10-2 0.9726 
4:12:1  2.28×10-4 0.9955  7.62×10-2 0.8257 
4-13:1  9.69×10-4 0.9885  8.41×10-2 0.9720 
4:14:1  3.28×10-4 0.9947  2.24×10-2 0.9573 
4:15:1  7.28×10-4 0.9957  5.57×10-2 0.9533 

 

Fig. 4. Plot of the experimental and theoretical results of the RSM and ANN models 

3.3. Decolorization kinetics 

Several investigators [60-62] have reported that the 
decolorization process mainly follows first-order kinetics. 
The kinetics experiments were conducted under optimized 
reaction conditions for applied AOP. In the experiments, the 
disappearance of dye was described as first-order reaction 
kinetics with regard to the dye concentration. The 
corresponding first-order correlation is shown in Figure 5 

which is the typical plot of linear regression (ln Co/Ct) verses 
time for color removal. It can be observed that the 
correlation between in Co/Ct and the irradiation time was 
linear. This was a typical pseudo first-order reaction plot. 
The kinetic expression can be presented as follows: 

ln
Ct

C0
= −k. t 

(9) 
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Where Ct  is the dye concentration at instant t (ppm), Co is 
the initial dye concentration (ppm), k is the pseudo first-
order rate constant (min-1), and t is the reaction time (min). 
The correlation coefficient that can explain the fitting extent 
of the function equation and the experimental data is 
presented by R2. In this case, the value of R2 is greater than 
0.9, which confirms the accuracy of the assumed kinetics for 
the O3/UV decolorization reactions of RR33. 

 
Fig. 5. First-order reaction kinetics for the decolorization of RR33 
by O3/UV process (dye concentration, 100 ppm, pH, 7.99, 
superficial gas velocity, 0.18 cm/s) 

The advantages of ozone over other oxidants are as follows: 
the fact that the degradable products of ozonation are 
generally non-toxic; its final products are CO2 and H2O; and 
the residual O3 in the system changes in a few minutes to O2 
[63]. A comparison between different oxidants was also 
carried out by Atchariyawuta et al. [64] and they found that 
O3 generally produced nontoxic products which were finally 
converted to CO2 and H2O if the conditions were extreme 
enough. Finally, as an example, the products of a 
decolorization break-down resulting from a direct dye using 
ozonation were subjected to toxicity and biodegradability 
tests. It was found that the oxidation products were non-
toxic to algae and had a high tendency for biodegradation 
[51]. 

4. Conclusions 

Both RSM and ANN techniques were applied for the 
modeling of the degradation of a colored solution of 
Reactive Red 33 by the UV/O3 process in a bubble column 
reactor. The effects of time, superficial gas velocity, initial 
concentration of dye, and pH on the decolorization 
efficiency of RR33 were investigated. The overall efficiency 
of the UV/O3 process was enhanced by operating at a basic 
pH. The efficiency of the AOPs gradually decreased with an 
increase in the initial concentration of the dye. It can be 
seen that the decolorization yield increased with an 
increase in time and superficial gas velocity. The ANN model 
was found to be capable of better predicting the 
decolorization efficiency of RR33 within the range it trained 
than the RSM model. The results of the ANN model 
indicated that it was much more robust and accurate in 
estimating the values of dependent variables when 
compared with the RSM model. 
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