Sustainable plastics from renewable resources: A review on starch-based bioplastics

Document Type : Review Paper

Authors

1 Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, 641402, Coimbatore, India

2 Department of Biotechnology, Easwari Engineering College, 600089, Chennai, India

Abstract

The increasing environmental impact of petroleum-based plastics has accelerated the search for sustainable, biodegradable alternatives derived from renewable resources. Among various biopolymers, starch-based bioplastics have gained significant attention due to their abundance, low cost, biodegradability, and ease of processing. This review provides a comprehensive overview of starch-based bioplastics, focusing on their sources, extraction methods, structural characteristics, production techniques, additives, and diverse applications. Starch, primarily composed of amylose and amylopectin, can be converted into thermoplastic starch (TPS) through plasticization, enabling melt processing via extrusion, injection molding, or solvent casting. The addition of plasticizers, fillers, acids, and biodegradable polymer blends enhances mechanical strength, flexibility, and water resistance, although challenges remain in achieving optimal thermal stability and moisture tolerance. Characterization studies involving mechanical, thermal, and morphological analyses are discussed to elucidate structure–property relationships. The review also highlights emerging applications in packaging, agriculture, medical devices, 3D printing, consumer goods, automotive components, and textiles. Furthermore, it underscores the importance of optimizing formulations, utilizing agricultural residues, and performing life-cycle and biodegradation assessments to ensure sustainability. Overall, starch-based bioplastics represent a promising pathway toward reducing plastic pollution and advancing a circular, bio-based materials economy.

Graphical Abstract

Sustainable plastics from renewable resources: A review on starch-based bioplastics

Keywords

Main Subjects


[1] Drayabeigi Zand, A., & Vaezi Heir, A. (2019). Environmental impact assessment of solid waste disposal options in touristic islands. Advances in environmental technology, 5(2), 115-125.
[2] Rahman, M. H., & Bhoi, P. R. (2021). An overview of non-biodegradable bioplastics. Journal of cleaner production, 294, 126218.
[3] Samir, A., Ashour, F. H., Hakim, A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. Npj Materials Degradation, 6(1), 68.
[4] Baranwal, J., Barse, B., Fais, A., Delogu, G. L., & Kumar, A. (2022). Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers, 14(5), 983.
[5] Skoczinski, P., Carus, M., Tweddle, G., Ruiz, P., Hark, N., Zhang, A., ... & Raschka, A. (2024). Bio-based Building Blocks and Polymers Global Capacities, Production and Trends 2023–2028. Industrial Biotechnology, 20(2), 52-59.
[6] Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353–1370.
[7] Agarwal, S., Singhal, S., Godiya, C. B., & Kumar, S. (2021). Prospects and Applications of Starch based Biopolymers. International Journal of Environmental Analytical Chemistry, 103(18), 6907–6926.
[8] Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14(21), 4557.
[9] Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers, 7(4), 32.
[10] Widyastuti, S., Utomo, Y., Firdayanti, A., Ratnawati, R., & Solikah, U. (2024). Bioplastic from Tapioca Starch Waste and Rice Waste. Indonesian Journal of Urban and Environmental Technology, 89-105.
[11] Yang, J., Ching, Y. C., Julai J, S., Chuah, C. H., Nguyen, D. H., & Lin, P. C. (2022). Comparative study on the properties of starch-based bioplastics incorporated with palm oil and epoxidized palm oil. Polymers and Polymer Composites, 30, 09673911221087595.
[12] Shafqat, A., Tahir, A., Mahmood, A., Tabinda, A. B., Yasar, A., & Pugazhendhi, A. (2020). A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. Biocatalysis and agricultural biotechnology, 27, 101540.
[13] Jayalath, U. T., Samaraweera, H., & Samarasinghe, A. (2025). Development and characterization of gelatin-starch bioplastics: A comparative study of cassava, corn, and rice-based alternatives. Sustainable Chemistry for the Environment, 9, 100190.
[14] Sagnelli, D., Hooshmand, K., Kemmer, G. C., Kirkensgaard, J. J. K., Mortensen, K., Giosafatto, C. V. L., Holse, M., Hebelstrup, K. H., Bao, J., Stelte, W., Bjerre, A.-B., & Blennow, A. (2017). Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 18(10), 2075.
[15] Lv, X., Hong, Y., Zhou, Q., & Jiang, C. (2021). Structural features and digestibility of corn starch with different amylose content. Frontiers in Nutrition, 8, 692673.
[16] Zhu, F., & Cui, R. (2020). Comparison of physicochemical properties of oca (Oxalis tuberosa), potato, and maize starches. International Journal of Biological Macromolecules, 148, 601-607.
[17] Bajaj, R., Singh, N., Kaur, A., & Inouchi, N. (2018). Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: a comparative study. Journal of food Science and Technology, 55(9), 3799-3808.
[18] Chisenga, S. M., Workneh, T. S., Bultosa, G., & Alimi, B. A. (2019). Progress in research and applications of cassava flour and starch: a review. Journal of food science and technology, 56(6), 2799-2813.
[19] Reuben-Kalu, J. I., Kokiladevi, E., Raveendran, M., Uma, D., Balasubramani, V., Kavitha, P. S., & Kingsley, T. L. (2024). Variability in starch content, starch granule morphology and size distribution of three cassava (Manihot esculenta) genotypes in relation to yield, at different planting seasons. Agricultural Science Digest, 44(5), 830-836.
[20] AKINTAYO, E. (2023). Morphological and functional properties of starches from cereal and legume: A comparative study.
[21] Sabatino, L., Iapichino, G., Vetrano, F., Moncada, A., Miceli, A., De Pasquale, C. & Giurgiulescu, L. (2018). Effects of polyethylene and biodegradable starch-based mulching films on eggplant production in a mediterranean area. Carpathian Journal of Food Science & Technology, 10(3).
[22] Sit, N., Misra, S., & Deka, S. C. (2014). Characterization of physicochemical, functional, textural and color properties of starches from two different varieties of taro and their comparison to potato and rice starches. Food Science and Technology Research, 20(2), 357-365.
[23]Tong, C., Ma, Z., Chen, H., & Gao, H. (2023). Toward an understanding of potato starch structure, function, biosynthesis, and applications. Food Frontiers, 4(3), 980-1000.
[24]Guo L, Chen H, Zhang Y, Yan S, Chen X, Gao X. (2023). Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Computational and Structural Biotechnology Journal. 21, 4172-86.
[25] Li, B., Xie, B., Liu, J., Chen, X., Zhang, Y., Tan, L., ... & Huang, C. (2022). A study of starch resources with high-amylose content from five Chinese mutant banana species. Frontiers in Nutrition, 9, 1073368.
[26] Yuan, D., Zhang, Y., Chen, X., Xu, F., Zhu, K., Wang, J., & Zhang, Y. (2025). Physicochemical, Structural, and Digestive Properties of Green Banana Starch from Five Chinese Mutant Banana Species. Foods, 14(4), 706.
[27] Marta, H., Cahyana, Y., Djali, M., & Pramafisi, G. (2022). The Properties, Modification, and Application of Banana Starch. Polymers 2022, 14, 3092.
[28] Nasir, N. N. & Othman, S. A. (2021). The physical and mechanical properties of corn-based bioplastic films with different starch and glycerol content. J. Phys. Sci., 32(3), 89–101.
[29] Sultan, N. F. K., & Johari, W. L. W. (2017). The development of banana peel/corn starch bioplastic film: a preliminary study. Bioremediation Science and Technology Research (e-ISSN 2289-5892), 5(1), 12-17.
[30] Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8).
[31] Zoungranan, Y., Lynda, E., Dobi-Brice, K. K., Tchirioua, E., Bakary, C., & Yannick, D. D. (2020). Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. Journal of Environmental Chemical Engineering, 8(5), 104396.
[32] Syuhada, M., Sofa, S. A., & Sedyadi, E. (2020). The effect of cassava peel starch addition to bioplastic biodegradation based on chitosan on soil and river water media. Biology, Medicine, & Natural Product Chemistry, 9(1), 7-13.
[33] Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2012). Mechanical and Physical Properties of Cassava Starch-Gelatin Composite Films. International Journal of Polymeric Materials and Polymeric Biomaterials, 61(10), 778–792.
[34] Suryanto, H., Hutomo, P. T., Wanjaya, R., Puspitasari, P., & Sukarni. (2016). The structure of bioplastic from cassava starch with nanoclay reinforcement. In AIP Conference Proceedings, 1778(1), 030027. AIP Publishing LLC.
[35] Ruamcharoen, J., Munlee, R., & Ruamcharoen, P. (2023). Eco‐friendly bio‐based composites of cassava starch and natural rubber compatibilized with nanoclays. Polymer Composites, 44(2), 1071-1082.
[36] Momotaz, F., Sarkar, A., Hasan, N. & Chowdhury, H., (2022) “Development of Biodegradable Plastics from Potato Starch with Enhanced Physico-Mechanical Properties Comparative to the Regular Plastic”, International Textile and Apparel Association Annual Conference Proceedings 78(1).
[37] Patel, M., Islam, S., Kallem, P. et al., (2023) Potato starch-based bioplastics synthesized using glycerol–sorbitol blend as a plasticizer: characterization and performance analysis. Int. J. Environ. Sci. Technol. 20, 7843–7860.
[38] Kasmuri, N., & Zait, M. S. A. (2018). Enhancement of bio-plastic using eggshells and chitosan on potato starch based. Int. J. Eng. Technol, 7(3), 110-115.
[39] Thakkar, A., Patel, B., Sahu, S. K., Yadav, V. K., Patel, R., Sahoo, D. K., ... & Patel, A. (2025). Potato starch bioplastic films reinforced with organic and inorganic fillers: A sustainable packaging alternative. International Journal of Biological Macromolecules, 306, 141630.
[40] Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers, 13(15), 2484.
[41] Rashwan, A.K., Younis, H.A., Abdelshafy, A.M., Osman, A.I., Eletmany, M.R., Hafouda, M.A. & Chem, W. (2024). Plant starch extraction, modification, and green applications: a review. Environ Chem Lett 22, 2483–2530.
[42] Singh, N., Sandhu, K. S., & Kaur, M. (2004). Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars. Journal of food Engineering, 63(4), 441-449.
[43] Daiuto, E., Cereda, M., Sarmento, S., & Vilpoux, O. (2005). Effects of extraction methods on yam (Dioscorea alata) starch characteristics. StarchStärke, 57(3‐4), 153-160.
[44] Diaz, A., Dini, C., Viña, S. Z., & García, M. A. (2016). Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa). Carbohydrate Polymers, 152, 231-240.
[45] Zhao, Y., Tan, X., Wu, G., & Gilbert, R. G. (2020). Using molecular fine structure to identify optimal methods of extracting starch. StarchStärke, 72(5-6), 1900214.
[46] Junejo, S. A., Wang, J., Liu, Y., Jia, R., Zhou, Y., & Li, S. (2022). Multi-Scale Structures and Functional Properties of Quinoa Starch Extracted by Alkali, Wet-Milling, and Enzymatic Methods. Foods, 11(17), 2625.
[47] Li, H., Li, C., Xu, Y., Cao, H., Wang, X., & He, J. (2025). Ultrasonic-assisted alkali extraction of quinoa polysaccharides: Yield and structural characterization. Journal of Cereal Science, 122, 104108. https://doi.org/10.1016/j.jcs.2025.104108.
[48] Wang, J., Lan, T., Lei, Y., Suo, J., Zhao, Q., Wang, H., ... & Ma, T. (2021). Optimization of ultrasonic-assisted enzymatic extraction of kiwi starch and evaluation of its structural, physicochemical, and functional characteristics. Ultrasonics Sonochemistry, 81, 105866.
[49] Wang, N., Shi, N., Fei, H., Liu, Y., Zhang, Y., Li, Z., ... & Zhang, D. (2022). Physicochemical, structural, and digestive properties of pea starch obtained via ultrasonic-assisted alkali extraction. Ultrasonics Sonochemistry, 89, 106136.
[50] Abotbina, W., Sapuan, S. M., Sultan, M. T. H., Alkbir, M. F. M., & Ilyas, R. A. (2021). Development and Characterization of Cornstarch-Based Bioplastics Packaging Film Using a Combination of Different Plasticizers. Polymers, 13(20), 3487.
[51] Shafqat, A. R. I. F. A., Tahir, A., Khan, W. U., Mahmood, A. D. E. E. L., & Abbasi, G. H. (2021). Production and characterization of rice starch and corn starch based biodegradable bioplastic using various plasticizers and natural reinforcing fillers. Cellulose Chemistry and Technology, 55, 867-881.
[52] Pradiza, R. R., Basyar, M. T. A. K., Asrofi, M., Abduh, M., Trifiananto, M., Junus, S., ... & Alahmadi, M. (2025). Study of tensile strength, microstructure and density-porosity properties of cassava starch-PLA bioplastic manufactured through solution casting. In IOP Conference Series: Earth and Environmental Science, 1454(1), 012014.
[53] Abera, W. G., Kasirajan, R., & Majamo, S. L. (2024). Synthesis and characterization of bioplastic film from banana (Musa Cavendish species) peel starch blending with banana pseudo-stem cellulosic fiber. Biomass Conversion and Biorefinery, 14(17), 20419-20440.
[54] Behera, L., Mohanta, M., & Thirugnanam, A. (2022). Intensification of yam-starch based biodegradable bioplastic film with bentonite for food packaging application. Environmental Technology & Innovation, 25, 102180.
[55] Temesgen, S., Rennert, M., Tesfaye, T., & Nase, M. (2021). Review on Spinning of Biopolymer Fibers from Starch. Polymers, 13(7), 1121.
[56] González-Gutiérrez, J., Partal, P., García-Morales, M., & Gallegos, C. (2011). Effect of processing on the viscoelastic, tensile and optical properties of albumen/starch-based bioplastics. Carbohydrate polymers, 84(1), 308-315.
[57] Castillo, L. A., López, O. V., García, M. A., Barbosa, S. E., & Villar, M. A. (2019). Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon, 5(6).
[58] Pooja, N., & Shashank, S. (2024). Advancing sustainable bioplastics: chemical and physical modification of starch films for enhanced thermal and barrier properties. RSC advances, 14(33), 23943-23951.
[59] Kowser, M. A., Mahmud, H., Chowdhury, M. A., Hossain, N., Mim, J. J., & Islam, S. (2025). Fabrication and characterization of corn starch based bioplastic for packaging applications. Results in Materials, 25, 100662. https://doi.org/10.1016/j.rinma.2025.100662.
[60] Gabriel, A. A., Solikhah, A. F., & Rahmawati, A. Y. (2021). Tensile strength and elongation testing for starch-based bioplastics using melt intercalation method: a review. Journal of Physics: Conference Series, 1858(1), 012028.
[61] Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate polymers, 60(3), 283-289.
[62] Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers, 7(6), 1106-1124.
[63] Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. (2019). Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International journal of biological macromolecules, 135, 282-293.
[64] Lounis, F. M., Benhacine, F., & Hadj-Hamou, A. S. (2024). Improving water barrier properties of starch based bioplastics by lignocellulosic biomass addition: Synthesis, characterization and antibacterial properties. International Journal of Biological Macromolecules, 283, 137823.
[65] Dankar, I., Haddarah, A., Omar, F. E., Pujolà, M., & Sepulcre, F. (2018). Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chemistry, 260, 7-12.
[66] Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical transactions of the royal society B: Biological sciences, 364(1526), 2127-2139.
[67] Kaur, L., & Singh, J. (2009). Novel applications and non-food uses of potato: Future perspectives in nanotechnology. Advances in potato chemistry and technology, pp. 425-445. Academic Press.
[68] Pei, J., Palanisamy, C. P., Srinivasan, G. P., Panagal, M., Kumar, S. S. D., & Mironescu, M. (2024). A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. International Journal of Biological Macromolecules, 274, 133332.
[69] de Azêvedo, L. C., Rovani, S., Santos, J. J., Dias, D. B., Nascimento, S. S., Oliveira, F. F., ... & Fungaro, D. A. (2021). Study of renewable silica powder influence in the preparation of bioplastics from corn and potato starch. Journal of Polymers and the Environment, 29, 707-720.
[70] Hazrol, M. D., Sapuan, S. M., Zainudin, E. S., Wahab, N. I. A., & Ilyas, R. A. (2022). Effect of Kenaf Fibre as Reinforcing Fillers in Corn Starch-Based Biocomposite Film. Polymers, 14(8), 1590.
[71] Ramírez, M. G. L., Satyanarayana, K. G., Iwakiri, S., de Muniz, G. B., Tanobe, V., & Flores-Sahagun, T. S. (2011). Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydrate Polymers, 86(4), 1712-1722.
[72] Dilkushi, H. A. S., Jayarathna, S., Manipura, A., Chamara, H. K. B. S., Edirisinghe, D., Vidanarachchi, J. K., & Priyashantha, H. (2024). Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly (vinyl alcohol): A sustainable packaging alternative. Carbohydrate Polymer Technologies and Applications, 7, 100472. https://doi.org/10.1016/j.carpta.2024.100472.
[73] Santana, I., Felix, M., & Bengoechea, C. (2024). Sustainable Biocomposites Based on Invasive Rugulopteryx okamurae Seaweed and Cassava Starch. Sustainability, 16(1), 76.
[74] Chaffa, T. Y., Meshesha, B. T., Mohammed, S. A., & Jabasingh, S. A. (2024). Production, characterization, and optimization of starch-based biodegradable bioplastic from waste potato (Solanum tuberosum) peel with the reinforcement of false banana (Ensete ventricosum) fiber. Biomass Conversion and Biorefinery, 14(21), 27365-27377.
[75] Gurunathan, M. K., Navasingh, R. J. H., Selvam, J. D. R., & Čep, R. (2025). Development and characterization of starch bioplastics as a sustainable alternative for packaging. Scientific Reports, 15(1), 15264.
[76] Tarique, J. S. M. S., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific reports, 11(1), 13900.
[77] Majeed, T., Dar, A. H., Pandey, V. K., Dash, K. K., Srivastava, S., Shams, R., ... & Pandiselvam, R. (2023). Role of additives in starch-based edible films and coating: A review with current knowledge. Progress in Organic Coatings, 181, 107597.
[78] Fitch-Vargas, P. R., Camacho-Hernández, I. L., Rodriguez-Gonzalez, F. J., Martínez-Bustos, F., Calderón-Castro, A., de Jesús Zazueta-Morales, J., & Aguilar-Palazuelos, E. (2023). Effect of compounding and plastic processing methods on the development of bioplastics based on acetylated starch reinforced with sugarcane bagasse cellulose fibers. Industrial Crops and Products, 192, 116084.
[79] Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Reinforcement of thermoplastic starch films with cellulose fibres obtained from rice and coffee husks. Journal of Renewable Materials, 6(6), 599-610.
 [80] Lomelí-Ramírez, M. G., Valdez-Fausto, E. M., Rentería-Urquiza, M., Jiménez-Amezcua, R. M., Hernández, J. A., Torres-Rendon, J. G., & Enriquez, S. G. (2018). Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydrate Polymers, 201, 9-19.
[81] Zamrud, Z., Ng, W. M., & Salleh, H. M. (2021, May). Effect of bentonite nanoclay filler on the properties of bioplastic based on sago starch. In IOP Conference Series: Earth and Environmental Science, 765(1), 012009.
[82] Campos, A., Neto, A. S., Rodrigues, V. B., Luchesi, B. R., Mattoso, L. H. C., & Marconcini, J. M. (2018). Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Industrial Crops and Products, 124, 149-154.
[83] Yusof, F. M., Wahab, N. A., Rahman, N. L. A., Kalam, A., Jumahat, A., & Taib, C. F. M. (2019). Properties of treated bamboo fiber reinforced tapioca starch biodegradable composite. Materials Today: Proceedings, 16, 2367-2373.
[84] Jaafar, J., Siregar, J. P., Oumer, A. N., Hamdan, M. H. M., Tezara, C., & Salit, M. S. (2018). Experimental Investigation on Performance of Short Pineapple Leaf Fiber Reinforced Tapioca Biopolymer Composites. BioResources, 13(3), 6341-6355.
[85] Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596.
[86] Sienkiewicz, N., Dominic, M., & Parameswaranpillai, J. (2022). Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers, 14(2), 265.
[87] Tarique, J., Sapuan, S. M., Khalina, A., Ilyas, R. A., & Zainudin, E. S. (2022). Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. International Journal of Biological Macromolecules, 213, 1-10.
[88] Chakraborty, I., Pooja, N., Govindaraju, I., Managuli, V., Banik, S., Mahato, K. K., & Mazumder, N. (2022). Preparation and characterization of citric acid crosslinked starch based bioplastic. Materials Today: Proceedings, 55, 26-30.
[89] Shafqat, A., Al-Zaqri, N., Tahir, A., & Alsalme, A. (2021). Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(3), 1739-1749.
[90] Ghasemlou, M., Barrow, C. J., & Adhikari, B. (2024). The future of bioplastics in food packaging: An industrial perspective. Food Packaging and Shelf Life, 43, 101279.
[91] Jabeen, N., Majid, I., & Nayik, G. A. (2015). Bioplastics and food packaging: A review. Cogent food & agriculture, 1(1), 1117749.
[92] El-Beltagi, H. S., Basit, A., Mohamed, H. I., Ali, I., Ullah, S., Kamel, E. A. R., Shalaby, T. A., Ramadan, K. M. A., Alkhateeb, A. A., & Ghazzawy, H. S. (2022). Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy, 12(8), 1881.
[93] Moshkbid, E., Cree, D. E., Bradford, L., & Zhang, W. (2024). Biodegradable Alternatives to Plastic in Medical Equipment: Current State, Challenges, and the Future. Journal of Composites Science, 8(9), 342.
[94] Torres, F. G., Commeaux, S., & Troncoso, O. P. (2013). Starch‐based biomaterials for wound‐dressing applications. StarchStärke, 65(7‐8), 543-551.
[95] Suarez, S. G., González-Lezcano, R. A., & López, R. E. G. (2025). Fabrication and Characterization of Potato Starch Bioplastics for 3d Printing.
[96] Wamuti, G. N., Mwangi, J. W., Karanja, S. K., Micke, L., & Zeidler, H. (2023). Optimization of extrusion process parameters of recycled high-density polyethylene-thermoplastic starch composite for fused filament fabrication. Open Journal of Composite Materials, 13(4), 69-86.
[97] Surendren, A., Mohanty, A. K., Liu, Q., & Misra, M. (2022). A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chemistry, 24(22), 8606-8636.
[98] Liang, X., Chen, L., McClements, D. J., Peng, X., Xu, Z., Meng, M., & Jin, Z. (2024). Bioactive delivery systems based on starch and its derivatives: Assembly and application at different structural levels. Food Chemistry, 432, 137184.
[99] Le, G. H., Thanh, D. A., Pham, T. T., Tran, Q. V., Dao, N. N., Nguyen, K. T. & Quan, T. T. (2025). UV-blocking and mechanically reinforced starch films incorporating Ce-UiO-66 nanoparticles for food packaging applications. RSC advances, 15(37), 30415-30426.
[100] Vieyra, H., Molina-Romero, J. M., Calderón-Nájera, J. d. D., & Santana-Díaz, A. (2022). Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review. Polymers, 14(16), 3412.
[101] Sobeih, M. O., Sawalha, S., Hamed, R., Ali, F., & Kim, M. P. (2025). Starch-Derived Bioplastics: Pioneering Sustainable Solutions for Industrial Use. Materials (Basel, Switzerland), 18(8), 1762.
[102] Kibet, T., Githinji, D. N., & Nziu, P. (2025). Natural Fibre–Reinforced Starch Biocomposites and Their Effects on the Material Mechanical Properties: A Review. Advances in Materials Science and Engineering, 2025(1), 9905014.