Integrating biomass into petrochemical processes: A review of feedstock options and conversion routes

Document Type : Review Paper

Authors

1 Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, 1458889694, Iran

2 Department of Chemistry, Ka.C., Islamic Azad University, Karaj, Iran, 3149968111, Iran

Abstract

Integrating biomass-derived feedstocks into petrochemical processes in Iran is a potential path toward environmental sustainability, enhancing sustainable energy and material production in the country. Iran possesses extensive fossil reserves. There is a growing demand to develop a diversified energy matrix due to greenhouse gas emissions and worldwide climate concerns. Biomass, a renewable resource, provides a sustainable path for the production of energy as well as chemical feedstocks. This study illustrates the potential of converting available biomass and waste into fuels and petrochemical intermediates, identifying technologies such as gasification, anaerobic digestion, and hydrothermal carbonization. It also examines Iran’s biomass resources, technological options, and strategic opportunities for integrating biomass-derived streams into the petrochemical value chain. The study addresses the challenges related to infrastructure development, feedstock logistics, and process optimization, noting that biomass integration offers significant economic and environmental benefits. Integrating biomass as a renewable energy and chemical feedstock supports Iran’s long-term sustainability goals while reducing dependence on fossil fuels and feedstocks. This approach also promotes rural and industrial development.

Graphical Abstract

Integrating biomass into petrochemical processes: A review of feedstock options and conversion routes

Keywords

Main Subjects


References
[1]    Bhatt, S. M., & Bal, J. S. (2019). Bioprocessing Perspective in Biorefineries. In N. Srivastava, M. Srivastava, P. K. Mishra, S. N. Upadhyay, P. W. Ramteke, & V. K. Gupta (Eds.), Sustainable Approaches for Biofuels Production Technologies: From Current Status to Practical Implementation (pp. 1–23). Springer International Publishing.
[2]    Mansouri, M. (2017). Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor. Advances in Environmental Technology, 2(3), 119–126.
[3]    Agenzia Internazionale dell’Energia. (2010). Energy technology perspectives 2010: Scenarios and strategies to 2050. Organisation for Economic Co-operation and Development (OECD)/International Energy Agency (IEA). https://www.oecd.org/content/dam/oecd/en/publications/reports/2009/07/energy-technology-perspectives-2010_g1ghcd5d/energy_tech-2010-en.pdf
[4]    Israel, A. U., Obot, I. B., Umoren, S. A., Mkpenie, V., & Ebong, G. A. (2008). Effluents and Solid Waste Analysis in a Petrochemical Company‐A Case Study of Eleme Petrochemical Company Ltd, Port Harcourt, Nigeria. Journal of Chemistry, 5(1), 74–80.
[5]    Ghazizade, M. J., Koulivand, H., Safari, E., & Heidari, L. (2021). Petrochemical waste characterization and management at Pars Special Economic Energy Zone in the south of Iran. Waste Management and Research, 39(2), 199–208.
[6]    Najafi, G., Ghobadian, B., Tavakoli, T., & Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews, 13(6–7), 1418–1427.
[7]    U.S. Energy Information Administration. (2024). Country analysis brief: Iran. U.S. Department of Energy.
[8]    Tabatabaei, M., Tohidfar, M., Jouzani, G. S., Safarnejad, M., & Pazouki, M. (2011). Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable and Sustainable Energy Reviews, 15(4), 1918–1927.
[9]    BP. (2022). Statistical review of world energy 2022. BP p.l.c.
[10]  Hamzeh, Y., Ashori, A., Mirzaei, B., Abdulkhani, A., & Molaei, M. (2011). Current and potential capabilities of biomass for green energy in Iran. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 9, pp. 4934–4938). Elsevier Ltd.
[11]  Ata, B., Pakrooh, P., Barkat, A., Benhizia, R., & Pénzes, J. (2022). Inequalities in Regional Level Domestic CO2 Emissions and Energy Use: A Case Study of Iran. Energies, 15(11).
[12]  Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116.
[13]  Roddy, D. J. (2013). Biomass in a petrochemical world. Interface Focus, 3(1).
https://doi.org/10.1098/rsfs.2012.0038
[14]  Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K., & Tabatabaei, M. (2020). Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy, 145, 699–710.
[15]  Kheybari, S., Rezaie, F. M., Naji, S. A., & Najafi, F. (2019). Evaluation of energy production technologies from biomass using analytical hierarchy process: The case of Iran. Journal of Cleaner Production, 232, 257–265.
[16]  Karimi Alavijeh, M., & Yaghmaei, S. (2016). Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Management, 52, 375–394.
[17]  Ren, T., Daniëls, B., Patel, M. K., & Blok, K. (2009). Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050. Resources, Conservation and Recycling, 53(12), 653–663.
[18]  Dathe, T., Müller, V., & Helmold, M. (2023). Energy supply. In Business opportunities and risks in China (pp. 85–102). Springer, Cham.
[19]  Lora, E. S., & Andrade, R. V. (2009). Biomass as energy source in Brazil. Renewable and Sustainable Energy Reviews, 13(4), 777–788.
[20]  Mohammadi, A., Soltanieh, M., Abbaspour, M., & Atabi, F. (2013). What is energy efficiency and emission reduction potential in the Iranian petrochemical industry? International Journal of Greenhouse Gas Control, 12, 460–471.
[21]  Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770.
[22]  Kalak, T. (2023). Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. In Energies (Vol. 16, Issue 4). MDPI.
[23]  Gaur, R. Z., Khoury, O., Zohar, M., Poverenov, E., Darzi, R., Laor, Y., & Posmanik, R. (2020). Hydrothermal carbonization of sewage sludge coupled with anaerobic digestion: Integrated approach for sludge management and energy recycling. Energy Conversion and Management, 224, 113353.
[24]  Hussin, F., Hazani, N. N., Khalil, M., & Aroua, M. K. (2023). Environmental life cycle assessment of biomass conversion using hydrothermal technology: A review. Fuel Processing Technology, 246, 107747.
[25]  Attasophonwattana, P., Sitthichirachat, P., Siripaiboon, C., Ketwong, T., Khaobang, C., Panichnumsin, P., Ding, L., & Areeprasert, C. (2022). Evolving circular economy in a palm oil factory: Integration of pilot-scale hydrothermal carbonization, gasification, and anaerobic digestion for valorization of empty fruit bunch. Applied Energy, 324, 119766.
[26]  Ahmadi, A., Esmaeilion, F., Esmaeilion, A., Ehyaei, M. A., & Silveira, J. L. (2020). Benefits and limitations of waste-to-energy conversion in Iran. Renewable Energy Research and Applications, 1(1), 27–45.
[27]  Ariae, A. R., Jahangiri, M., Fakhr, M. H., & Shamsabadi, A. A. (2019). Simulation of biogas utilization effect on the economic efficiency and greenhouse gas emission: A case study in Isfahan, Iran. International Journal of Renewable Energy Development, 8(2), 149–160.
[28]  Maitlo, G., Ali, I., Mangi, K. H., Ali, S., Maitlo, H. A., Unar, I. N., & Pirzada, A. M. (2022). Thermochemical conversion of biomass for syngas production: Current status and future trends. Sustainability, 14(5), 2596.
[29]  Nunes, L. J. R. (2022). Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results in Engineering, 14, 100408.
[30]  Pang, S. (2019). Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 37(4), 589–597.
[31]  Tezer, Ö., Karabağ, N., Öngen, A., Çolpan, C. Ö., & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 47(34), 15419–15433.
[32]  Van Doren, L. G., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology, 225, 67–74.
[33]  Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143.
[34]  Sherwood, J. (2020). The significance of biomass in a circular economy. In Bioresource Technology (Vol. 300). Elsevier Ltd.
[35]  Pashmi, Z., Chamehsara, M., Parsi, S., & Golzary, A. (2025). Sustainable site selection for biomass refineries: an analytic net-work process model for optimizing bioenergy production in Iran. Rec. Prog. Sci, 2, 1.
[36]  Potrč, S., Petrovič, A., Egieya, J. M., & Čuček, L. (2025). Valorization of biomass through anaerobic digestion and hydrothermal carbonization: integrated process flowsheet and supply chain network optimization. Energies, 18(2), 334.
[37]  Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. In Biofuel Research Journal (Vol. 6, Issue 2, pp. 962–979). Green Wave Publishing of Canada.
[38]  Kaltschmitt, M. (2019). Renewable energy from biomass: Introduction. In Energy from organic materials (biomass) (pp. 1–14). Springer.
[39]  Tkemaladze, G. S., & Makhashvili, K. A. (2016). Climate changes and photosynthesis. Annals of Agrarian Science, 14(2), 119–126.
[40]  Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., & Thakur, I. S. (2018). Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. In Bioresource Technology (Vol. 247, pp. 1059–1068). Elsevier Ltd.
[41]  Parmar, K. (2017). Biomass- An Overview on Composition Characteristics and Properties. IRA-International Journal of Applied Sciences (ISSN 2455-4499), 7(1), 42.
[42]  Samadi, S. H., Ghobadian, B., & Nosrati, M. (2020). Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran. Renewable Energy, 149, 1077–1091.
[43]  AlNouss, A., McKay, G., & Al-Ansari, T. (2019). Superstructure optimization for the production of fuels, fertilizers and power using biomass gasification. In Computer aided chemical engineering (Vol. 46, pp. 301–306). Elsevier.
[44]  Spath, P. L., & Dayton, D. C. (2003). Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory (NREL).
[45]  Higman, C., & van der Burgt, M. (2003). Gasification processes. Gasification, 85-170. (n.d.).
[46]  Cavali, M., Libardi Junior, N., de Sena, J. D., Woiciechowski, A. L., Soccol, C. R., Belli Filho, P., Bayard, R., Benbelkacem, H., & de Castilhos Junior, A. B. (2023). A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. In Science of the Total Environment (Vol. 857). Elsevier B.V.
[47]  Mukadam, Z., Scott, S. B., Titirici, M. M., & Stephens, I. E. L. (2024). An alternative to petrochemicals: biomass electrovalorization. In Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (Vol. 382, Issue 2282, p. 20230262).
[48]  Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. In Journal of Cleaner Production (Vol. 402). Elsevier Ltd.
[49]  Kuznetsova, E., Cardin, M. A., Diao, M., & Zhang, S. (2019). Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renewable and Sustainable Energy Reviews, 103, 477–500.
[50]  Neelis, M., Patel, M., Blok, K., Haije, W., & Bach, P. (2007). Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes. Energy, 32(7), 1104–1123.
[51]  Efficiency, E. (2007). Tracking industrial energy efficiency and CO2 emissions. International Energy Agency, 34(2), 1–12.
[52]  Atukunda, A., Ibrahim, M. G., Fujii, M., Ookawara, S., & Nasr, M. (2024). Dual biogas/biochar production from anaerobic co-digestion of petrochemical and domestic wastewater: a techno-economic and sustainable approach. In Biomass Conversion and Biorefinery (Vol. 14, Issue 7, pp. 8793–8803).
[53]  Clauser, N. M., González, G., Mendieta, C. M., Kruyeniski, J., Area, M. C., & Vallejos, M. E. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability (Switzerland), 13(2), 1–21.
[54]  Taufer, N. L., Benedetti, V., Pecchi, M., Matsumura, Y., & Baratieri, M. (2021). Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products. Renewable Energy, 173, 934–941.
[55]  Ipiales, R. P., de La Rubia, M. A., Diaz, E., Mohedano, A. F., & Rodriguez, J. J. (2021). Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: an overview. Energy & Fuels, 35(21), 17032–17050.
[56]  Sharma, I., Rackemann, D., Ramirez, J., Cronin, D. J., Moghaddam, L., Beltramini, J. N., Te’o, J., Li, K., Shi, C., & Doherty, W. O. S. (2022). Exploring the potential for biomethane production by the hybrid anaerobic digestion and hydrothermal gasification process: a review. Journal of Cleaner Production, 362, 132507.
[57]  Parmar, K. R., & Ross, A. B. (2019). Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate. Energies, 12(9), 1586.
[58]  Heidari, M., Dutta, A., Acharya, B., & Mahmud, S. (2019). A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 92(6), 1779–1799.
[59]  González-Arias, J., Sánchez, M. E., Cara-Jiménez, J., Baena-Moreno, F. M., & Zhang, Z. (2022). Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 20(1), 211–221.
[60]  Mirdar Harijani, A., Mansour, S., Karimi, B., & Lee, C. G. (2017). Multi-period sustainable and integrated recycling network for municipal solid waste – A case study in Tehran. Journal of Cleaner Production, 151, 96–108.
[61]  Habibi, F., Asadi, E., Sadjadi, S. J., & Barzinpour, F. (2017). A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities: A case study in Tehran. Journal of Cleaner Production, 166, 816–834.
[62]  Ahmed, S. I., Johari, A., Hashim, H., Mat, R., Lim, J. S., Ngadi, N., & Ali, A. (2015). Optimal landfill gas utilization for renewable energy production. Environmental Progress and Sustainable Energy, 34(1), 289–296.
[63]  Hiremath, R. B., Kumar, B., Balachandra, P., & Ravindranath, N. H. (2011). Decentralized sustainable energy planning of Tumkur district, India. Environmental Progress and Sustainable Energy, 30(2), 248–258.
[64]  Amuzu‐Sefordzi, B., Huang, J., Sowa, D. M. A., & Baddoo, T. D. (2016). Biomass‐derived hydrogen energy potential in Africa. Environmental Progress & Sustainable Energy, 35(1), 289–297.
[65] Wu, L., Moteki, T., Gokhale, A. A., Flaherty, D. W., & Toste, F. D. (2016). Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. In Chem (Vol. 1, Issue 1, pp. 32–58). Elsevier Inc.
[66] Lipinsky, E. S. (1981). Chemicals from biomass: petrochemical substitution options. Science, 212(4502), 1465–1471.
[67] Fathi‐Afshar, S., & Rudd, D. F. (1980). Biomass ethanol as a chemical feedstock in the United States. In Biotechnology and Bioengineering (Vol. 22, Issue 3, pp. 677–679).
[68] Drożyner, P., Rejmer, W., Starowicz, P., Klasa, A., & Skibniewska, K. A. (2013). Biomass as a renewable source of energy. Technical Sciences, 16(1), 45–55. University of Warmia and Mazury in Olsztyn.