References
[1] Bhatt, S. M., & Bal, J. S. (2019). Bioprocessing Perspective in Biorefineries. In N. Srivastava, M. Srivastava, P. K. Mishra, S. N. Upadhyay, P. W. Ramteke, & V. K. Gupta (Eds.), Sustainable Approaches for Biofuels Production Technologies: From Current Status to Practical Implementation (pp. 1–23). Springer International Publishing.
[2] Mansouri, M. (2017). Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor. Advances in Environmental Technology, 2(3), 119–126.
[4] Israel, A. U., Obot, I. B., Umoren, S. A., Mkpenie, V., & Ebong, G. A. (2008). Effluents and Solid Waste Analysis in a Petrochemical Company‐A Case Study of Eleme Petrochemical Company Ltd, Port Harcourt, Nigeria. Journal of Chemistry, 5(1), 74–80.
[5] Ghazizade, M. J., Koulivand, H., Safari, E., & Heidari, L. (2021). Petrochemical waste characterization and management at Pars Special Economic Energy Zone in the south of Iran. Waste Management and Research, 39(2), 199–208.
[6] Najafi, G., Ghobadian, B., Tavakoli, T., & Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews, 13(6–7), 1418–1427.
[7] U.S. Energy Information Administration. (2024). Country analysis brief: Iran. U.S. Department of Energy.
[8] Tabatabaei, M., Tohidfar, M., Jouzani, G. S., Safarnejad, M., & Pazouki, M. (2011). Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable and Sustainable Energy Reviews, 15(4), 1918–1927.
[9] BP. (2022). Statistical review of world energy 2022. BP p.l.c.
[10] Hamzeh, Y., Ashori, A., Mirzaei, B., Abdulkhani, A., & Molaei, M. (2011). Current and potential capabilities of biomass for green energy in Iran. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 9, pp. 4934–4938). Elsevier Ltd.
[11] Ata, B., Pakrooh, P., Barkat, A., Benhizia, R., & Pénzes, J. (2022). Inequalities in Regional Level Domestic CO2 Emissions and Energy Use: A Case Study of Iran. Energies, 15(11).
[12] Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116.
[13] Roddy, D. J. (2013). Biomass in a petrochemical world. Interface Focus, 3(1).
https://doi.org/10.1098/rsfs.2012.0038
[14] Kazemi Shariat Panahi, H., Dehhaghi, M., Aghbashlo, M., Karimi, K., & Tabatabaei, M. (2020). Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy, 145, 699–710.
[15] Kheybari, S., Rezaie, F. M., Naji, S. A., & Najafi, F. (2019). Evaluation of energy production technologies from biomass using analytical hierarchy process: The case of Iran. Journal of Cleaner Production, 232, 257–265.
[16] Karimi Alavijeh, M., & Yaghmaei, S. (2016). Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Management, 52, 375–394.
[17] Ren, T., Daniëls, B., Patel, M. K., & Blok, K. (2009). Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050. Resources, Conservation and Recycling, 53(12), 653–663.
[18] Dathe, T., Müller, V., & Helmold, M. (2023). Energy supply. In Business opportunities and risks in China (pp. 85–102). Springer, Cham.
[19] Lora, E. S., & Andrade, R. V. (2009). Biomass as energy source in Brazil. Renewable and Sustainable Energy Reviews, 13(4), 777–788.
[20] Mohammadi, A., Soltanieh, M., Abbaspour, M., & Atabi, F. (2013). What is energy efficiency and emission reduction potential in the Iranian petrochemical industry? International Journal of Greenhouse Gas Control, 12, 460–471.
[21] Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770.
[22] Kalak, T. (2023). Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. In Energies (Vol. 16, Issue 4). MDPI.
[23] Gaur, R. Z., Khoury, O., Zohar, M., Poverenov, E., Darzi, R., Laor, Y., & Posmanik, R. (2020). Hydrothermal carbonization of sewage sludge coupled with anaerobic digestion: Integrated approach for sludge management and energy recycling. Energy Conversion and Management, 224, 113353.
[24] Hussin, F., Hazani, N. N., Khalil, M., & Aroua, M. K. (2023). Environmental life cycle assessment of biomass conversion using hydrothermal technology: A review. Fuel Processing Technology, 246, 107747.
[25] Attasophonwattana, P., Sitthichirachat, P., Siripaiboon, C., Ketwong, T., Khaobang, C., Panichnumsin, P., Ding, L., & Areeprasert, C. (2022). Evolving circular economy in a palm oil factory: Integration of pilot-scale hydrothermal carbonization, gasification, and anaerobic digestion for valorization of empty fruit bunch. Applied Energy, 324, 119766.
[26] Ahmadi, A., Esmaeilion, F., Esmaeilion, A., Ehyaei, M. A., & Silveira, J. L. (2020). Benefits and limitations of waste-to-energy conversion in Iran. Renewable Energy Research and Applications, 1(1), 27–45.
[27] Ariae, A. R., Jahangiri, M., Fakhr, M. H., & Shamsabadi, A. A. (2019). Simulation of biogas utilization effect on the economic efficiency and greenhouse gas emission: A case study in Isfahan, Iran. International Journal of Renewable Energy Development, 8(2), 149–160.
[28] Maitlo, G., Ali, I., Mangi, K. H., Ali, S., Maitlo, H. A., Unar, I. N., & Pirzada, A. M. (2022). Thermochemical conversion of biomass for syngas production: Current status and future trends. Sustainability, 14(5), 2596.
[29] Nunes, L. J. R. (2022). Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results in Engineering, 14, 100408.
[30] Pang, S. (2019). Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 37(4), 589–597.
[31] Tezer, Ö., Karabağ, N., Öngen, A., Çolpan, C. Ö., & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 47(34), 15419–15433.
[32] Van Doren, L. G., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology, 225, 67–74.
[33] Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143.
[34] Sherwood, J. (2020). The significance of biomass in a circular economy. In Bioresource Technology (Vol. 300). Elsevier Ltd.
[35] Pashmi, Z., Chamehsara, M., Parsi, S., & Golzary, A. (2025). Sustainable site selection for biomass refineries: an analytic net-work process model for optimizing bioenergy production in Iran. Rec. Prog. Sci, 2, 1.
[36] Potrč, S., Petrovič, A., Egieya, J. M., & Čuček, L. (2025). Valorization of biomass through anaerobic digestion and hydrothermal carbonization: integrated process flowsheet and supply chain network optimization. Energies, 18(2), 334.
[37] Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. In Biofuel Research Journal (Vol. 6, Issue 2, pp. 962–979). Green Wave Publishing of Canada.
[38] Kaltschmitt, M. (2019). Renewable energy from biomass: Introduction. In Energy from organic materials (biomass) (pp. 1–14). Springer.
[39] Tkemaladze, G. S., & Makhashvili, K. A. (2016). Climate changes and photosynthesis. Annals of Agrarian Science, 14(2), 119–126.
[40] Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., & Thakur, I. S. (2018). Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. In Bioresource Technology (Vol. 247, pp. 1059–1068). Elsevier Ltd.
[41] Parmar, K. (2017). Biomass- An Overview on Composition Characteristics and Properties. IRA-International Journal of Applied Sciences (ISSN 2455-4499), 7(1), 42.
[42] Samadi, S. H., Ghobadian, B., & Nosrati, M. (2020). Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran. Renewable Energy, 149, 1077–1091.
[43] AlNouss, A., McKay, G., & Al-Ansari, T. (2019). Superstructure optimization for the production of fuels, fertilizers and power using biomass gasification. In Computer aided chemical engineering (Vol. 46, pp. 301–306). Elsevier.
[44] Spath, P. L., & Dayton, D. C. (2003). Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory (NREL).
[45] Higman, C., & van der Burgt, M. (2003). Gasification processes. Gasification, 85-170. (n.d.).
[46] Cavali, M., Libardi Junior, N., de Sena, J. D., Woiciechowski, A. L., Soccol, C. R., Belli Filho, P., Bayard, R., Benbelkacem, H., & de Castilhos Junior, A. B. (2023). A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. In Science of the Total Environment (Vol. 857). Elsevier B.V.
[47] Mukadam, Z., Scott, S. B., Titirici, M. M., & Stephens, I. E. L. (2024). An alternative to petrochemicals: biomass electrovalorization. In Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (Vol. 382, Issue 2282, p. 20230262).
[48] Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. In Journal of Cleaner Production (Vol. 402). Elsevier Ltd.
[49] Kuznetsova, E., Cardin, M. A., Diao, M., & Zhang, S. (2019). Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renewable and Sustainable Energy Reviews, 103, 477–500.
[50] Neelis, M., Patel, M., Blok, K., Haije, W., & Bach, P. (2007). Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes. Energy, 32(7), 1104–1123.
[51] Efficiency, E. (2007). Tracking industrial energy efficiency and CO2 emissions. International Energy Agency, 34(2), 1–12.
[52] Atukunda, A., Ibrahim, M. G., Fujii, M., Ookawara, S., & Nasr, M. (2024). Dual biogas/biochar production from anaerobic co-digestion of petrochemical and domestic wastewater: a techno-economic and sustainable approach. In Biomass Conversion and Biorefinery (Vol. 14, Issue 7, pp. 8793–8803).
[53] Clauser, N. M., González, G., Mendieta, C. M., Kruyeniski, J., Area, M. C., & Vallejos, M. E. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability (Switzerland), 13(2), 1–21.
[54] Taufer, N. L., Benedetti, V., Pecchi, M., Matsumura, Y., & Baratieri, M. (2021). Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products. Renewable Energy, 173, 934–941.
[55] Ipiales, R. P., de La Rubia, M. A., Diaz, E., Mohedano, A. F., & Rodriguez, J. J. (2021). Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: an overview. Energy & Fuels, 35(21), 17032–17050.
[56] Sharma, I., Rackemann, D., Ramirez, J., Cronin, D. J., Moghaddam, L., Beltramini, J. N., Te’o, J., Li, K., Shi, C., & Doherty, W. O. S. (2022). Exploring the potential for biomethane production by the hybrid anaerobic digestion and hydrothermal gasification process: a review. Journal of Cleaner Production, 362, 132507.
[57] Parmar, K. R., & Ross, A. B. (2019). Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate. Energies, 12(9), 1586.
[58] Heidari, M., Dutta, A., Acharya, B., & Mahmud, S. (2019). A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 92(6), 1779–1799.
[59] González-Arias, J., Sánchez, M. E., Cara-Jiménez, J., Baena-Moreno, F. M., & Zhang, Z. (2022). Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 20(1), 211–221.
[60] Mirdar Harijani, A., Mansour, S., Karimi, B., & Lee, C. G. (2017). Multi-period sustainable and integrated recycling network for municipal solid waste – A case study in Tehran. Journal of Cleaner Production, 151, 96–108.
[61] Habibi, F., Asadi, E., Sadjadi, S. J., & Barzinpour, F. (2017). A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities: A case study in Tehran. Journal of Cleaner Production, 166, 816–834.
[62] Ahmed, S. I., Johari, A., Hashim, H., Mat, R., Lim, J. S., Ngadi, N., & Ali, A. (2015). Optimal landfill gas utilization for renewable energy production. Environmental Progress and Sustainable Energy, 34(1), 289–296.
[63] Hiremath, R. B., Kumar, B., Balachandra, P., & Ravindranath, N. H. (2011). Decentralized sustainable energy planning of Tumkur district, India. Environmental Progress and Sustainable Energy, 30(2), 248–258.
[64] Amuzu‐Sefordzi, B., Huang, J., Sowa, D. M. A., & Baddoo, T. D. (2016). Biomass‐derived hydrogen energy potential in Africa. Environmental Progress & Sustainable Energy, 35(1), 289–297.
[65] Wu, L., Moteki, T., Gokhale, A. A., Flaherty, D. W., & Toste, F. D. (2016). Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. In Chem (Vol. 1, Issue 1, pp. 32–58). Elsevier Inc.
[66] Lipinsky, E. S. (1981). Chemicals from biomass: petrochemical substitution options. Science, 212(4502), 1465–1471.
[67] Fathi‐Afshar, S., & Rudd, D. F. (1980). Biomass ethanol as a chemical feedstock in the United States. In Biotechnology and Bioengineering (Vol. 22, Issue 3, pp. 677–679).
[68] Drożyner, P., Rejmer, W., Starowicz, P., Klasa, A., & Skibniewska, K. A. (2013). Biomass as a renewable source of energy. Technical Sciences, 16(1), 45–55. University of Warmia and Mazury in Olsztyn.