[1] Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E., Zhang, J., & Liu, H. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878.
https://doi.org/10.1016/j.jhazmat.2021.126878
[2] Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances, 13(26), 17595–17610.
https://doi.org/10.1039/D3RA00723E
[3] Dehkordi, M. M., Pournuroz Nodeh, Z., Soleimani Dehkordi, K., Salmanvandi, H., Rasouli Khorjestan, R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 23, 102729.
https://doi.org/10.1016/j.rineng.2024.102729
[4] Siringoringo, V. T., Pringgenies, D., & Ambariyanto, A. (2022). Kajian kandungan logam berat merkuri (Hg), tembaga (Cu), dan timbal (Pb) pada Perna viridis di Kota Semarang. Journal of Marine Research, 11(3), 539–546.
https://doi.org/10.14710/jmr.v11i3.33864
[5] Fulke, A. B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin, 206, 116707.
https://doi.org/10.1016/j.marpolbul.2024.116707
[6] Pradona, S., & Partaya. (2022). Akumulasi logam berat timbal (Pb) pada daging ikan di Tanjung Mas Semarang. Life Science, 11(2), 143–150.
http://journal.unnes.ac.id/sju/index.php/LifeSci
[7] Jia, J., Gao, Y., Lu, Y., Shi, K., Li, Z., & Wang, S. (2020). Trace metal effects on gross primary productivity and its associative environmental risk assessment in a subtropical lake, China. Environmental Pollution, 259, 113848.
https://doi.org/10.1016/j.envpol.2019.113848
[8] Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., & Chandra, I. (2023). Heavy metal pollution in the environment and its impact on health: Exploring green technology for remediation. Environmental Health Insights, 17, 1–10.
https://doi.org/10.1177/11786302231201259
[9] Somayaji, A., Sarkar, S., Balasubramaniam, S., & Raval, R. (2022). Synthetic biology techniques to tackle heavy metal pollution and poisoning. Synthetic and Systems Biotechnology, 7(3), 841–846.
https://doi.org/10.1016/j.synbio.2022.04.007
[10] Sharma, S., Singh, S. P., Iqbal, H. M. N., & Tong, Y. W. (2022). Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environmental Research, 211, 113102.
https://doi.org/10.1016/j.envres.2022.113102
[11] Khalifa, A. M., ElBaghdady, K. Z., Kafrawy, S. B. El, & El-Zeiny, A. M. (2025). Bioremediation vs. traditional methods: A comparative review of heavy metal removal techniques from aquatic environment. Egyptian Journal of Aquatic Biology and Fisheries, 29(2), 1307–1335.
https://doi.org/10.21608/ejabf.2025.419832
[12] Razzak, S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S. M. Z., & Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, 100168.
https://doi.org/10.1016/j.envadv.2022.100168
[13] Zhou, B., Zhang, T., & Wang, F. (2023). Microbial-based heavy metal bioremediation: Toxicity and eco-friendly approaches to heavy metal decontamination. Applied Sciences, 13(14), 8439.
https://doi.org/10.3390/app13148439
[14] Liao, J., Xu, Y., Zhang, Z., Zeng, L., Qiao, Y., Guo, Z., Chen, J., Jia, B., Shang, C., & Chen, S. (2023). Effect of Cu addition on sedimentary bacterial community structure and heavy metal resistance gene abundance in mangrove wetlands. Frontiers in Marine Science, 10, 1157905.
https://doi.org/10.3389/fmars.2023.1157905
[15] Karnwal, A. (2024). Unveiling the promise of biosorption for heavy metal removal from water sources. Desalination and Water Treatment, 319, 100523.
https://doi.org/10.1016/j.dwt.2024.100523
[16] Sreedevi, P. R., Suresh, K., & Jiang, G. (2022). Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications. Journal of Water Process Engineering, 48, 102884.
https://doi.org/10.1016/j.jwpe.2022.102884
[17] Danial, A. W., & Dardir, F. M. (2023). Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microbial Cell Factories, 22(1), 1–12.
https://doi.org/10.1186/s12934-023-02166-3
[18] Kumar, A., Mukherjee, G., Ahuja, V., Gupta, S., Tarighat, M. A., & Abdi, G. (2024). Biosorption and transformation of cadmium and lead by Staphylococcus epidermidis AS-1 isolated from industrial effluent. BMC Microbiology, 24(1), 1–12.
https://doi.org/10.1186/s12866-024-03568-y
[19] Focarelli, F., Giachino, A., & Waldron, K. J. (2022). Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLOS Pathogens, 18(7), e1010617.
https://doi.org/10.1371/journal.ppat.1010617
[20] Howard, J. A., David, L., Lux, F., & Tillement, O. (2024). Low-level, chronic ingestion of lead and cadmium: The unspoken danger for at-risk populations. Journal of Hazardous Materials, 478, 135361.
https://doi.org/10.1016/j.jhazmat.2024.135361
[21] Chen, Min, J., & Wang, F. (2022). Copper homeostasis and cuproptosis in health and disease. Signal Transduction and Targeted Therapy, 7(1), 378.
https://doi.org/10.1038/s41392-022-01229-y
[22] Yang, R., Roshani, D., Gao, B., Li, P., & Shang, N. (2024). Metallothionein: A comprehensive review of its classification, structure, biological functions, and applications. Antioxidants, 13(7), 825.
https://doi.org/10.3390/antiox13070825
[23] Khayati, S. El, Khatib, K. El, & Yamani, A. El. (2020). Dental metals: Is there a health risk? Journal of Research in Medical and Dental Science, 8(4), 162–165.
[24] Gembillo, G., Labbozzetta, V., Giuffrida, A. E., Peritore, L., Calabrese, V., Spinella, C., Stancanelli, M. R., Spallino, E., Visconti, L., & Santoro, D. (2022). Potential role of copper in diabetes and diabetic kidney disease. Metabolites, 13(1), 17.
https://doi.org/10.3390/metabo13010017
[25] Nnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024). Mechanisms of heavy metal tolerance in bacteria: A review. Sustainability, 16(24), 1–22.
https://doi.org/10.3390/su162411124
[26] Folvarska, V., Thomson, S. M., Lu, Z., Adelgren, M., Schmidt, A., Newton, R. J., Wang, Y., & McNamara, P. J. (2024). The effects of lead, copper, and iron corrosion products on antibiotic resistant bacteria and antibiotic resistance genes. Environmental Science: Advances, 3(6), 808–818.
https://doi.org/10.1039/D4VA00026A
[27] Tian, R.M., Wang, Y., Bougouffa, S., Gao, Z.M., Cai, L., Zhang, W.P., Bajic, V., & Qian, P.Y. (2014). Effect of copper treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. mBio, 5(6), e01980-14.
https://doi.org/10.1128/mBio.01980-14
[28] Coclet, C., Garnier, C., Durrieu, G., D’onofrio, S., Layglon, N., Briand, J.-F., & Misson, B. (2020). Impacts of copper and lead exposure on prokaryotic communities from contaminated contrasted coastal seawaters: The influence of previous metal exposure. FEMS Microbiology Ecology, 96(6), fiaa048.
https://doi.org/10.1093/femsec/fiaa048
[29] Akalin, G. O. (2021). Interaction of copper (II) oxide nanoparticles with aquatic organisms: Uptake, accumulation, and toxicity. Toxicological & Environmental Chemistry, 103(4), 342–381.
https://doi.org/10.1080/02772248.2021.1926463
[30] Ishaque, A., Ishaque, S., Arif, A., & Abbas, H. (2020). Toxic effects of lead on fish and human. Biological and Clinical Sciences Research Journal, 2020(1).
https://doi.org/10.54112/bcsrj.v2020i1.47
[31] Mebane, C. A. (2023). Bioavailability and toxicity models of copper to freshwater life: The state of regulatory science. Environmental Toxicology and Chemistry, 42(12), 2529–2563.
https://doi.org/10.1002/etc.5736
[32] Botté, A., Seguin, C., Nahrgang, J., Zaidi, M., Guery, J., & Leignel, V. (2022). Lead in the marine environment: Concentrations and effects on invertebrates. Ecotoxicology, 31(2), 194–207.
https://doi.org/10.1007/s10646-021-02504-4
[33] Hee, C. W., Shing, W. L., & Chi, C. K. (2021). Effect of lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. South African Journal of Chemical Engineering, 37, 252–255.
https://doi.org/10.1016/j.sajce.2021.04.002
[34] Rocha, G. S., Parrish, C. C., & Espíndola, E. L. G. (2021). Effects of copper on photosynthetic and physiological parameters of a freshwater microalga (Chlorophyceae). Algal Research, 54, 102223.
https://doi.org/10.1016/j.algal.2021.102223
[35] Cvijan, B. B., Korać Jačić, J., & Bajčetić, M. (2023). The impact of copper ions on the activity of antibiotic drugs. Molecules, 28(13), 5133.
https://doi.org/10.3390/molecules28135133
[36] Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology, 77(5), 1541–1547.
https://doi.org/10.1128/AEM.02766-10
[37] Andrei, A., Öztürk, Y., Khalfaoui-Hassani, B., Rauch, J., Marckmann, D., Trasnea, P.-I., Daldal, F., & Koch, H.-G. (2020). Cu homeostasis in bacteria: The ins and outs. Membranes, 10(9), 242.
https://doi.org/10.3390/membranes10090242
[38] Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2–3), 197–213.
https://doi.org/10.1016/S0168-6445(03)00049-4
[39] Miloud, S. Ben, Dziri, O., Ferjani, S., Ali, M. M., Mysara, M., Boutiba, I., Houdt, R. Van, & Chouchani, C. (2021). First description of various bacteria resistant to heavy metals and antibiotics isolated from polluted sites in Tunisia. Polish Journal of Microbiology, 70(2), 161–174.
https://doi.org/10.33073/pjm-2021-012
[40] Nong, Q., Yuan, K., Li, Z., Chen, P., Huang, Y., Hu, L., Jiang, J., Luan, T., & Chen, B. (2019). Bacterial resistance to lead: Chemical basis and environmental relevance. Journal of Environmental Sciences, 85, 46–55.
https://doi.org/10.1016/j.jes.2019.04.022
[41] Peshkov, S. A., & Khursan, S. L. (2017). Complexation of the Zn, Co, Cd, and Pb ions by metallothioneins: A QM/MM simulation. Computational and Theoretical Chemistry, 1106, 1–6.
https://doi.org/10.1016/j.comptc.2017.02.029
[42] Fatima, Z., Azam, A., Iqbal, M. Z., Badar, R., & Muhammad, G. (2024). A comprehensive review on effective removal of toxic heavy metals from water using genetically modified microorganisms. Desalination and Water Treatment, 319, 100553.
https://doi.org/10.1016/j.dwt.2024.100553
[43] Jia, X., Li, Y., Xu, T., & Wu, K. (2020). Display of lead‐binding proteins on Escherichia coli surface for lead bioremediation. Biotechnology and Bioengineering, 117(12), 3820–3834.
https://doi.org/10.1002/bit.27525
[44] Kim, H.A., Lee, K.Y., Lee, B.T., Kim, S.O., & Kim, K.W. (2012). Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans. Water Research, 46(17), 5591–5599.
https://doi.org/10.1016/j.watres.2012.07.044
[45] Sayyadi, S., Ahmady-Asbchin, S., Kamali, K., & Tavakoli, N. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb+2 from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. Journal of the Taiwan Institute of Chemical Engineers, 80, 701–708.
https://doi.org/10.1016/j.jtice.2017.09.005
[46] Pagnucco, G., Overfield, D., Chamlee, Y., Shuler, C., Kassem, A., Opara, S., Najaf, H., Abbas, L., Coutinho, O., Fortuna, A., Sulaiman, F., Farinas, J., Schittenhelm, R., Catalfano, B., Li, X., & Tiquia-Arashiro, S. M. (2023). Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed. Frontiers in Microbiology, 14, 1278886.
https://doi.org/10.3389/fmicb.2023.1278886
[47] Harun, F. A., Yusuf, M. R., Usman, S., Shehu, D., Babagana, K., Sufyanu, A. J., Jibril, M. M., Bello, A. M., Musa, K. A., Jagaba, A. H., Shukor, M. Y., & Yakasai, H. M. (2023). Bioremediation of lead contaminated environment by Bacillus cereus strain BUK_BCH_BTE2: Isolation and characterization of the bacterium. Case Studies in Chemical and Environmental Engineering, 8, 100540.
https://doi.org/10.1016/j.cscee.2023.100540
[48] Shahid, A., Pandey, C., Ahmad, F., & Kamal, A. (2021). Bacterial bioremediation: Strategies adopted by microbial-community to remediate lead from the environment. Journal of Applied Biology and Biotechnology, 9(6), 18–24.
https://doi.org/10.7324/JABB.2021.9602
[49] Gouda, S. A., & Taha, A. (2023). Biosorption of heavy metals as a new alternative method for wastewater treatment: A review. Egyptian Journal of Aquatic Biology and Fisheries, 27(2), 135–153.
https://doi.org/10.21608/ejabf.2023.291671
[50] Jhariya, U., Chien, M.-F., Umetsu, M., & Kamitakahara, M. (2025). New insights into immobilized bacterial systems for removal of heavy metals from wastewater. International Journal of Environmental Science and Technology.
https://doi.org/10.1007/s13762-025-06369-6
[51] Li, X., Wang, L., Xu, R., Yang, Y., Yin, H., Jin, S., Huang, H., & He, J. (2022). Potentiality of phosphorus‐accumulating organisms biomasses in biosorption of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions: Behaviors and mechanisms. Chemosphere, 303, 135095.
https://doi.org/10.1016/j.chemosphere.2022.135095
[52] Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in Microbiology, 13, 824084.
https://doi.org/10.3389/fmicb.2022.824084
[53] Ghoniem, A. A., El-Naggar, N. E.-A., Saber, W. I. A., El-Hersh, M. S., & El-Khateeb, A. Y. (2020). Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Scientific Reports, 10(1), 9491.
https://doi.org/10.1038/s41598-020-66101-x
[54] Jeyakumar, P., Debnath, C., Vijayaraghavan, R., & Muthuraj, M. (2022). Trends in bioremediation of heavy metal contaminations. Environmental Engineering Research, 28(4), 220631.
https://doi.org/10.4491/eer.2021.631
[55] Nanda, M. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquatic Toxicology, 212, 1–10.
https://doi.org/10.1016/j.aquatox.2019.04.011
[56] Joshi, S., Gangola, S., Bhandari, G., Bhandari, N. S., Nainwal, D., Rani, A., Malik, S., & Slama, P. (2023). Rhizospheric bacteria: The key to sustainable heavy metal detoxification strategies. Frontiers in Microbiology, 14, 1229828.
https://doi.org/10.3389/fmicb.2023.1229828
[57] Benhalima, L., Amri, S., Bensouilah, M., & Ouzrout, R. (2020). Heavy metal resistance and metallothionein induction in bacteria isolated from Seybouse River, Algeria. Applied Ecology and Environmental Research, 18(1), 1721–1737.
https://doi.org/10.15666/aeer/1801_17211737
[58] Glasauer, S. M., Beveridge, T. J., Burford, E. P., Harper, F. A., & Gadd, G. M. (2013). Metals and metalloids, transformation by microorganisms. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
https://doi.org/10.1016/B978-0-12-409548-9.05217-9
[59] Gul, I., Adil, M., Lv, F., Li, T., Chen, Y., Lu, H., Ahamad, M. I., Lu, S., & Feng, W. (2024). Microbial strategies for lead remediation in agricultural soils and wastewater: Mechanisms, applications, and future directions. Frontiers in Microbiology, 15, 1434921.
https://doi.org/10.3389/fmicb.2024.1434921
[60] You, W., Peng, W., Tian, Z., & Zheng, M. (2021). Uranium bioremediation with U(VI)-reducing bacteria. Science of the Total Environment, 798, 149107.
https://doi.org/10.1016/j.scitotenv.2021.149107
[61] Gadd, G. (2001). Accumulation and transformation of metals by microorganisms. In Biotechnology: A Multi-Volume Comprehensive Treatise (Vol. 10, pp. 225–264). Wiley-VCH Verlag GmbH.
https://doi.org/10.1002/9783527620937.ch9k
[62] Bang, S.-W., Clark, D. S., & Keasling, J. D. (2000). Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica Serovar Typhimurium in Escherichia coli. Applied and Environmental Microbiology, 66(9), 3939–3944.
https://doi.org/10.1128/AEM.66.9.3939-3944.2000
[63] Sharma, P. K., Balkwill, D. L., Frenkel, A., & Vairavamurthy, M. A. (2000). A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Applied and Environmental Microbiology, 66(7), 3083–3087.
https://doi.org/10.1128/AEM.66.7.3083-3087.2000
[64] Wróbel, M. (2023). Bioremediation of heavy metals by the genus Bacillus. International Journal of Environmental Research and Public Health, 20(6), 4964.
https://doi.org/10.3390/ijerph20064964
[65] Jeremic, S., Beškoski, V. P., Djokic, L., Vasiljevic, B., Vrvić, M. M., Avdalović, J., Gojgić Cvijović, G., Beškoski, L. S., & Nikodinovic-Runic, J. (2016). Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. Journal of Environmental Management, 172, 151–161.
https://doi.org/10.1016/j.jenvman.2016.02.041
[66] Liu, C., Ma, Q., Zhou, X., Lai, H., & Li, L. (2018). Bioleaching of heavy metals from sludge by mixed strains. IOP Conference Series: Earth and Environmental Science, 208, 012077.
https://doi.org/10.1088/1755-1315/208/1/012077
[67] Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D., & Wright, T. L. (2010). The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy, 104(3–4), 342–350.
https://doi.org/10.1016/j.hydromet.2010.01.012
[68] Rouchalova, D., Rouchalova, K., Janakova, I., Cablik, V., & Janstova, S. (2020). Bioleaching of iron, copper, lead, and zinc from the sludge mining sediment at different particle sizes, pH, and pulp density using Acidithiobacillus ferrooxidans. Minerals, 10(11), 1013.
https://doi.org/10.3390/min10111013
[69] Wu, W., Liu, X., Zhang, X., Zhu, M., & Tan, W. (2018). Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresources and Bioprocessing, 5(1), 10.
https://doi.org/10.1186/s40643-018-0196-6
[70] Das, G., Mondal, B., Ghosh, M., & Routh, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31.
https://doi.org/10.1016/j.jhazmat.2007.10.075
[71] Rodríguez-Tirado, V., Green-Ruiz, C., & Gómez-Gil, B. (2012). Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chemical Engineering Journal, 181–182, 352–359.
https://doi.org/10.1016/j.cej.2011.11.091
[72] Wierzba, S. (2015). Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Polish Journal of Chemical Technology, 17(1), 79–87.
https://doi.org/10.1515/pjct-2015-0012
[73] Hu, N., Luo, Y., Song, J., Wu, L., & Zhang, H. (2010). Influences of soil organic matter, pH and temperature on Pb sorption by four soils in Yangtze River Delta. Acta Pedologica Sinica, 47(2), 246–252.
[74] Fang, L., Zhou, C., Cai, P., Chen, W., Rong, X., Dai, K., Liang, W., Gu, J.-D., & Huang, Q. (2011). Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. Journal of Hazardous Materials, 190(1–3), 810–815.
https://doi.org/10.1016/j.jhazmat.2011.03.122
[75] Abo-Alkasem, M. I., Hassan, N. H., & Abo Elsoud, M. M. (2023). Microbial bioremediation as a tool for the removal of heavy metals. Bulletin of the National Research Centre, 47(1), 31.
https://doi.org/10.1186/s42269-023-01006-z
[76] Acar, F. (2004). The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. Bioresource Technology, 94(1), 13–15.
https://doi.org/10.1016/j.biortech.2003.10.032
[77] Tyagi, S., Kumar, V., Singh, J., Teotia, P., Bisht, S., & Sharma, S. (2014). Bioremediation of pulp and paper mill effluent by dominant aboriginal microbes and their consortium. International Journal of Environmental Research, 8(3), 561–568.
https://doi.org/10.22059/IJER.2014.750
[78] Park, J. H., Lee, S.-J., Lee, M.-E., & Chung, J. W. (2016). Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar. Environmental Science: Processes & Impacts, 18(4), 514–520.
https://doi.org/10.1039/C6EM00098C
[79] Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645.
https://doi.org/10.1016/j.jhazmat.2008.06.042
[80] Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180.
https://doi.org/10.1007/s11274-016-2137-x
[81] Dong, D., Sun, H., Qi, Z., & Liu, X. (2021). Improving microbial bioremediation efficiency of intensive aquacultural wastewater based on bacterial pollutant metabolism kinetics analysis. Chemosphere, 265, 129151.
https://doi.org/10.1016/j.chemosphere.2020.129151
[82] Karnwal, A., Martolia, S., Dohroo, A., Al-Tawaha, A. R. M. S., & Malik, T. (2024). Exploring bioremediation strategies for heavy metals and POPs pollution: The role of microbes, plants, and nanotechnology. Frontiers in Environmental Science, 12.
https://doi.org/10.3389/fenvs.2024.1397850
[83] Marquiegui-Alvaro, A., Kottara, A., Chacón, M., Cliffe, L., Brockhurst, M., & Dixon, N. (2025). Genetic bioaugmentation‐mediated bioremediation of terephthalate in soil microcosms using an engineered environmental plasmid. Microbial Biotechnology, 18(1).
https://doi.org/10.1111/1751-7915.70071
[84] Huang, X., Zhang, R., Cui, M., & Lai, H. (2022). Experimental investigation on bioremediation of heavy metal contaminated solution by Sporosarcina pasteurii under some complex conditions. Water, 14(4), 595.
https://www.mdpi.com/2073-4441/14/4/595
[85] Nandy, S., Andraskar, J., Lanjewar, K., & Kapley, A. (2021). Challenges in bioremediation: From lab to land. In Bioremediation for Environmental Sustainability (pp. 561–583). Elsevier.
https://doi.org/10.1016/B978-0-12-820524-2.00023-7
[86] Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154–171.
https://doi.org/10.1016/j.wmb.2024.07.005
[87] Madison, A. S., Sorsby, S. J., Wang, Y., & Key, T. A. (2023). Increasing in situ bioremediation effectiveness through field-scale application of molecular biological tools. Frontiers in Microbiology, 13.
https://doi.org/10.3389/fmicb.2022.1005871
[88] Aquino, E., Barbieri, C., & Oller Nascimento, C. A. (2011). Engineering bacteria for bioremediation. In Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. InTech.
https://doi.org/10.5772/19546
[89] Pereira, L. C. C., Sousa, N. do S. da S., Silva, B. R. P. da, Costa, A. L. B. da, Cavalcante, F. R. B., Rodrigues, L. M. dos S., Freitas, A. A. da S., Gomes, A. C. C., & Dias, F. C. da S. (2023). Influence of anthropogenic activities on the water quality of an urban river in an unplanned zone of the Amazonian coast. Limnological Review, 23(2), 108–125.
https://doi.org/10.3390/limnolrev23020007
[90] Wang, Y., Li, Y., Liang, J., Bi, Y., Wang, S., & Shang, Y. (2021). Climatic changes and anthropogenic activities driving the increase in nitrogen: Evidence from the South-to-North water diversion project. Water, 13(18), 2517.
https://www.mdpi.com/2073-4441/13/18/2517
[91] Yudhistira, M. H., Karimah, I. D., & Maghfira, N. R. (2022). The effect of port development on coastal water quality: Evidence of eutrophication states in Indonesia. Ecological Economics, 196, 107415.
https://doi.org/10.1016/j.ecolecon.2022.107415
[92] Li, L., Liu, Z., Meng, D., Liu, X., Li, X., Zhang, M., Tao, J., Gu, Y., Zhong, S., & Yin, H. (2019). Comparative genomic analysis reveals the distribution, organization, and evolution of metal resistance genes in the genus Acidithiobacillus. In S.-J. Liu (Ed.), Applied and Environmental Microbiology, 85(2).
https://doi.org/10.1128/AEM.02153-18
[93] Sun, W., Sun, X., Li, B., Xu, R., Young, L. Y., Dong, Y., Li, Y., Wang, C., & Zhao, Y. (2020). Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance. Environmental International, 138, 105620.
https://doi.org/10.1016/j.envint.2020.105620
[94] Li, L., Meng, D., Yin, H., Zhang, T., & Liu, Y. (2023). Genome-resolved metagenomics provides insights into the ecological roles of the keystone taxa in heavy-metal-contaminated soils. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1203164
[95] Chen, H., Min, F., Hu, X., Ma, D., & Huo, Z. (2023). Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. Journal of Hazardous Materials, 452, 131176.
https://doi.org/10.1016/j.jhazmat.2023.131176
[96] Duan, L., Wang, Q., Li, J., Wang, F., Yang, H., Guo, B., & Hashimoto, Y. (2022). Zero valent iron or Fe₃O₄-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth. Environmental Pollution, 308, 119702.
https://doi.org/10.1016/j.envpol.2022.119702
[97] Karthika, P., Dinesh, G. K., Elakkya, M., Palanisamy, K., Elangovan, A., & Soni, R. (2024). Metagenomics for mitigation of heavy metal toxicity in plants. In Current Omics Advancement in Plant Abiotic Stress Biology (pp. 383–396). Elsevier.
https://doi.org/10.1016/B978-0-443-21625-1.00026-9
[98] Zhao, X., Teng, Z., Wang, G., Luo, W., Guo, Y., Ji, X., Xu, Y., & Li, H. (2023). Anaerobic syntrophic system composed of phosphate solubilizing bacteria and dissimilatory iron reducing bacteria induces cadmium immobilization via secondary mineralization. Journal of Hazardous Materials, 446, 130702.
https://doi.org/10.1016/j.jhazmat.2022.130702
[99] Chen, H., Jiang, H., Nazhafati, M., Li, L., & Jiang, J. (2023). Biochar: An effective measure to strengthen phosphorus solubilizing microorganisms for remediation of heavy metal pollution in soil. Frontiers in Bioengineering and Biotechnology, 11.
https://doi.org/10.3389/fbioe.2023.1127166
[100] Xie, L., Zhu, G., Shang, J., Chen, X., Zhang, C., Ji, X., Zhang, Q., & Wei, Y. (2021). An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell Signalling, 87(August), 110122.
https://doi.org/10.1016/j.cellsig.2021.110122
[101] Tu, C., Wei, J., Guan, F., Liu, Y., Sun, Y., & Luo, Y. (2020). Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environment International, 137, 105576.
https://doi.org/10.1016/j.envint.2020.105576
[102] Yadav, N., Jyoti, Thakur, I. S., & Srivastava, S. (2023). Omics approach in bioremediation of heavy metals (HMs) in industrial wastewater. In Genomics Approach to Bioremediation (pp. 343–361). Wiley.
https://doi.org/10.1002/9781119852131.ch18
[103] Malik, S., Kishore, S., Shah, M. P., & Kumar, S. A. (2022). A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater. Journal of Basic Microbiology, 62(3–4), 361–375.
https://doi.org/10.1002/jobm.202100555
[104] Liu, M., Li, Z., Chen, Z., Qi, X., Yang, L., & Chen, G. (2022). Simultaneous biodetection and bioremediation of Cu²⁺ from industrial wastewater by bacterial cell surface display system. International Biodeterioration & Biodegradation, 173, 105467.
https://doi.org/10.1016/j.ibiod.2022.105467
[105] Zhu, N., Zhang, B., & Yu, Q. (2020). Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Applied Materials & Interfaces, 12(20), 22948–22957.
https://doi.org/10.1021/acsami.0c04512
[106] Thai, T. D., Lim, W., & Na, D. (2023). Synthetic bacteria for the detection and bioremediation of heavy metals. Frontiers in Bioengineering and Biotechnology, 11.
https://doi.org/10.3389/fbioe.2023.1178680
[107] Mohamed, E. S., Jalhoum, M. E. M., Hendawy, E., El-Adly, A. M., Nawar, S., Rebouh, N. Y., Saleh, A., & Shokr, M. S. (2024). Geospatial evaluation and bio-remediation of heavy metal-contaminated soils in arid zones. Frontiers in Environmental Science, 12.
https://doi.org/10.3389/fenvs.2024.1381409
[108] Jusufi, K., Ejupi, A., Demaku, S., & Maliqi, E. (2024). Monitoring heavy metals and spatial analysis using pollution indices and cartographic visualization: A case study in Kosovo. Soil and Sediment Contamination: An International Journal, 1–18.
https://doi.org/10.1080/15320383.2024.2430268
[109] Saravanan, P., Saravanan, V., Rajeshkannan, R., Arnica, G., Rajasimman, M., & Baskar, G. (2024). Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environmental Research, 258, 119440.
https://doi.org/10.1016/j.envres.2024.119440