Bacterial-based bioremediation: A sustainable strategy for mitigating copper and lead contamination in aquatic ecosystems

Document Type : Review Paper

Authors

1 Biology Department, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

2 Cluster for Paleolimnology (CPalim), Diponegoro University, Semarang, Indonesia

Abstract

The contamination of aquatic ecosystems by heavy metals, particularly copper (Cu) and lead (Pb), has emerged as a significant environmental concern driven by escalating anthropogenic activities. These metals are persistent, bioaccumulate across trophic levels, and exert toxic effects on aquatic organisms and human health. To address this issue, bacterial-based bioremediation has gained prominence as a sustainable and eco-friendly solution. This approach leverages the intrinsic capabilities of specific microorganisms to absorb, sequester, and neutralize heavy metals through mechanisms including bioadsorption, the expression of heavy metal resistance genes (HMRGs), and nanoparticle biosynthesis. Notably, species such as Bacillus subtilis and Pseudomonas aeruginosa have demonstrated remarkable efficiency, achieving up to 100% bioremoval of Pb and Cu, respectively. Advances in biotechnology, including omics technologies, genetic engineering, and nanobiotechnology, have significantly enhanced the capacity of bacteria for effective heavy metal remediation. Future strategies are likely to involve synergistic approaches, such as the coupling of microbial agents with functionalized nanoparticles, real-time monitoring systems powered by Geographic Information Systems (GIS), and the reinforcement of industrial waste regulations to optimize overall remediation efficacy. Although challenges persist, particularly concerning the complex interactions between microbes and their environments, the integration of multidisciplinary approaches offers a holistic and environmentally responsible framework for mitigating Cu and Pb pollution. Furthermore, this strategy fosters greater community involvement in sustainability initiatives. Consequently, bacterial-based bioremediation is not only a promising method for restoring aquatic ecosystems but also a critical pillar in the development of future-oriented environmental management strategies.

Graphical Abstract

Bacterial-based bioremediation: A sustainable strategy for mitigating copper and lead contamination in aquatic ecosystems

Keywords

Main Subjects


[1]          Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E., Zhang, J., & Liu, H. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878.
https://doi.org/10.1016/j.jhazmat.2021.126878
[2]          Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances, 13(26), 17595–17610.
https://doi.org/10.1039/D3RA00723E
[3]          Dehkordi, M. M., Pournuroz Nodeh, Z., Soleimani Dehkordi, K., Salmanvandi, H., Rasouli Khorjestan, R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 23, 102729.
https://doi.org/10.1016/j.rineng.2024.102729
[4]          Siringoringo, V. T., Pringgenies, D., & Ambariyanto, A. (2022). Kajian kandungan logam berat merkuri (Hg), tembaga (Cu), dan timbal (Pb) pada Perna viridis di Kota Semarang. Journal of Marine Research, 11(3), 539–546.
https://doi.org/10.14710/jmr.v11i3.33864
[5]          Fulke, A. B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin, 206, 116707.
https://doi.org/10.1016/j.marpolbul.2024.116707
[6]          Pradona, S., & Partaya. (2022). Akumulasi logam berat timbal (Pb) pada daging ikan di Tanjung Mas Semarang. Life Science, 11(2), 143–150.
http://journal.unnes.ac.id/sju/index.php/LifeSci
[7]          Jia, J., Gao, Y., Lu, Y., Shi, K., Li, Z., & Wang, S. (2020). Trace metal effects on gross primary productivity and its associative environmental risk assessment in a subtropical lake, China. Environmental Pollution, 259, 113848.
https://doi.org/10.1016/j.envpol.2019.113848
[8]          Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., & Chandra, I. (2023). Heavy metal pollution in the environment and its impact on health: Exploring green technology for remediation. Environmental Health Insights, 17, 1–10.
https://doi.org/10.1177/11786302231201259
[9]          Somayaji, A., Sarkar, S., Balasubramaniam, S., & Raval, R. (2022). Synthetic biology techniques to tackle heavy metal pollution and poisoning. Synthetic and Systems Biotechnology, 7(3), 841–846.
https://doi.org/10.1016/j.synbio.2022.04.007
[10]        Sharma, S., Singh, S. P., Iqbal, H. M. N., & Tong, Y. W. (2022). Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environmental Research, 211, 113102.
https://doi.org/10.1016/j.envres.2022.113102
[11]        Khalifa, A. M., ElBaghdady, K. Z., Kafrawy, S. B. El, & El-Zeiny, A. M. (2025). Bioremediation vs. traditional methods: A comparative review of heavy metal removal techniques from aquatic environment. Egyptian Journal of Aquatic Biology and Fisheries, 29(2), 1307–1335.
https://doi.org/10.21608/ejabf.2025.419832
[12]        Razzak, S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S. M. Z., & Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, 100168.
https://doi.org/10.1016/j.envadv.2022.100168
[13]        Zhou, B., Zhang, T., & Wang, F. (2023). Microbial-based heavy metal bioremediation: Toxicity and eco-friendly approaches to heavy metal decontamination. Applied Sciences, 13(14), 8439.
https://doi.org/10.3390/app13148439
[14]        Liao, J., Xu, Y., Zhang, Z., Zeng, L., Qiao, Y., Guo, Z., Chen, J., Jia, B., Shang, C., & Chen, S. (2023). Effect of Cu addition on sedimentary bacterial community structure and heavy metal resistance gene abundance in mangrove wetlands. Frontiers in Marine Science, 10, 1157905.
https://doi.org/10.3389/fmars.2023.1157905
[15]        Karnwal, A. (2024). Unveiling the promise of biosorption for heavy metal removal from water sources. Desalination and Water Treatment, 319, 100523.
https://doi.org/10.1016/j.dwt.2024.100523
[16]        Sreedevi, P. R., Suresh, K., & Jiang, G. (2022). Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications. Journal of Water Process Engineering, 48, 102884.
https://doi.org/10.1016/j.jwpe.2022.102884
[17]        Danial, A. W., & Dardir, F. M. (2023). Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microbial Cell Factories, 22(1), 1–12.
https://doi.org/10.1186/s12934-023-02166-3
[18]        Kumar, A., Mukherjee, G., Ahuja, V., Gupta, S., Tarighat, M. A., & Abdi, G. (2024). Biosorption and transformation of cadmium and lead by Staphylococcus epidermidis AS-1 isolated from industrial effluent. BMC Microbiology, 24(1), 1–12.
https://doi.org/10.1186/s12866-024-03568-y
[19]        Focarelli, F., Giachino, A., & Waldron, K. J. (2022). Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLOS Pathogens, 18(7), e1010617.
https://doi.org/10.1371/journal.ppat.1010617
[20]        Howard, J. A., David, L., Lux, F., & Tillement, O. (2024). Low-level, chronic ingestion of lead and cadmium: The unspoken danger for at-risk populations. Journal of Hazardous Materials, 478, 135361.
https://doi.org/10.1016/j.jhazmat.2024.135361
[21]        Chen, Min, J., & Wang, F. (2022). Copper homeostasis and cuproptosis in health and disease. Signal Transduction and Targeted Therapy, 7(1), 378.
https://doi.org/10.1038/s41392-022-01229-y
[22]        Yang, R., Roshani, D., Gao, B., Li, P., & Shang, N. (2024). Metallothionein: A comprehensive review of its classification, structure, biological functions, and applications. Antioxidants, 13(7), 825.
https://doi.org/10.3390/antiox13070825
[23]        Khayati, S. El, Khatib, K. El, & Yamani, A. El. (2020). Dental metals: Is there a health risk? Journal of Research in Medical and Dental Science, 8(4), 162–165.
[24]        Gembillo, G., Labbozzetta, V., Giuffrida, A. E., Peritore, L., Calabrese, V., Spinella, C., Stancanelli, M. R., Spallino, E., Visconti, L., & Santoro, D. (2022). Potential role of copper in diabetes and diabetic kidney disease. Metabolites, 13(1), 17.
https://doi.org/10.3390/metabo13010017
[25]        Nnaji, N. D., Anyanwu, C. U., Miri, T., & Onyeaka, H. (2024). Mechanisms of heavy metal tolerance in bacteria: A review. Sustainability, 16(24), 1–22.
https://doi.org/10.3390/su162411124
[26]        Folvarska, V., Thomson, S. M., Lu, Z., Adelgren, M., Schmidt, A., Newton, R. J., Wang, Y., & McNamara, P. J. (2024). The effects of lead, copper, and iron corrosion products on antibiotic resistant bacteria and antibiotic resistance genes. Environmental Science: Advances, 3(6), 808–818.
https://doi.org/10.1039/D4VA00026A
[27]        Tian, R.M., Wang, Y., Bougouffa, S., Gao, Z.M., Cai, L., Zhang, W.P., Bajic, V., & Qian, P.Y. (2014). Effect of copper treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. mBio, 5(6), e01980-14.
https://doi.org/10.1128/mBio.01980-14
[28]        Coclet, C., Garnier, C., Durrieu, G., D’onofrio, S., Layglon, N., Briand, J.-F., & Misson, B. (2020). Impacts of copper and lead exposure on prokaryotic communities from contaminated contrasted coastal seawaters: The influence of previous metal exposure. FEMS Microbiology Ecology, 96(6), fiaa048.
https://doi.org/10.1093/femsec/fiaa048
[29]        Akalin, G. O. (2021). Interaction of copper (II) oxide nanoparticles with aquatic organisms: Uptake, accumulation, and toxicity. Toxicological & Environmental Chemistry, 103(4), 342–381.
https://doi.org/10.1080/02772248.2021.1926463
[30]        Ishaque, A., Ishaque, S., Arif, A., & Abbas, H. (2020). Toxic effects of lead on fish and human. Biological and Clinical Sciences Research Journal, 2020(1).
https://doi.org/10.54112/bcsrj.v2020i1.47
[31]        Mebane, C. A. (2023). Bioavailability and toxicity models of copper to freshwater life: The state of regulatory science. Environmental Toxicology and Chemistry, 42(12), 2529–2563.
https://doi.org/10.1002/etc.5736
[32]        Botté, A., Seguin, C., Nahrgang, J., Zaidi, M., Guery, J., & Leignel, V. (2022). Lead in the marine environment: Concentrations and effects on invertebrates. Ecotoxicology, 31(2), 194–207.
https://doi.org/10.1007/s10646-021-02504-4
[33]        Hee, C. W., Shing, W. L., & Chi, C. K. (2021). Effect of lead (Pb) exposure towards green microalgae (Chlorella vulgaris) on the changes of physicochemical parameters in water. South African Journal of Chemical Engineering, 37, 252–255.
https://doi.org/10.1016/j.sajce.2021.04.002
[34]        Rocha, G. S., Parrish, C. C., & Espíndola, E. L. G. (2021). Effects of copper on photosynthetic and physiological parameters of a freshwater microalga (Chlorophyceae). Algal Research, 54, 102223.
https://doi.org/10.1016/j.algal.2021.102223
[35]        Cvijan, B. B., Korać Jačić, J., & Bajčetić, M. (2023). The impact of copper ions on the activity of antibiotic drugs. Molecules, 28(13), 5133.
https://doi.org/10.3390/molecules28135133
[36]        Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology, 77(5), 1541–1547.
https://doi.org/10.1128/AEM.02766-10
[37]        Andrei, A., Öztürk, Y., Khalfaoui-Hassani, B., Rauch, J., Marckmann, D., Trasnea, P.-I., Daldal, F., & Koch, H.-G. (2020). Cu homeostasis in bacteria: The ins and outs. Membranes, 10(9), 242.
https://doi.org/10.3390/membranes10090242
[38]        Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2–3), 197–213.
https://doi.org/10.1016/S0168-6445(03)00049-4
[39]        Miloud, S. Ben, Dziri, O., Ferjani, S., Ali, M. M., Mysara, M., Boutiba, I., Houdt, R. Van, & Chouchani, C. (2021). First description of various bacteria resistant to heavy metals and antibiotics isolated from polluted sites in Tunisia. Polish Journal of Microbiology, 70(2), 161–174.
https://doi.org/10.33073/pjm-2021-012
[40]        Nong, Q., Yuan, K., Li, Z., Chen, P., Huang, Y., Hu, L., Jiang, J., Luan, T., & Chen, B. (2019). Bacterial resistance to lead: Chemical basis and environmental relevance. Journal of Environmental Sciences, 85, 46–55.
https://doi.org/10.1016/j.jes.2019.04.022
[41]        Peshkov, S. A., & Khursan, S. L. (2017). Complexation of the Zn, Co, Cd, and Pb ions by metallothioneins: A QM/MM simulation. Computational and Theoretical Chemistry, 1106, 1–6.
https://doi.org/10.1016/j.comptc.2017.02.029
[42]        Fatima, Z., Azam, A., Iqbal, M. Z., Badar, R., & Muhammad, G. (2024). A comprehensive review on effective removal of toxic heavy metals from water using genetically modified microorganisms. Desalination and Water Treatment, 319, 100553.
https://doi.org/10.1016/j.dwt.2024.100553
[43]        Jia, X., Li, Y., Xu, T., & Wu, K. (2020). Display of lead‐binding proteins on Escherichia coli surface for lead bioremediation. Biotechnology and Bioengineering, 117(12), 3820–3834.
https://doi.org/10.1002/bit.27525
[44]        Kim, H.A., Lee, K.Y., Lee, B.T., Kim, S.O., & Kim, K.W. (2012). Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans. Water Research, 46(17), 5591–5599.
https://doi.org/10.1016/j.watres.2012.07.044
[45]        Sayyadi, S., Ahmady-Asbchin, S., Kamali, K., & Tavakoli, N. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb+2 from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. Journal of the Taiwan Institute of Chemical Engineers, 80, 701–708.
https://doi.org/10.1016/j.jtice.2017.09.005
[46]        Pagnucco, G., Overfield, D., Chamlee, Y., Shuler, C., Kassem, A., Opara, S., Najaf, H., Abbas, L., Coutinho, O., Fortuna, A., Sulaiman, F., Farinas, J., Schittenhelm, R., Catalfano, B., Li, X., & Tiquia-Arashiro, S. M. (2023). Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed. Frontiers in Microbiology, 14, 1278886.
https://doi.org/10.3389/fmicb.2023.1278886
[47]        Harun, F. A., Yusuf, M. R., Usman, S., Shehu, D., Babagana, K., Sufyanu, A. J., Jibril, M. M., Bello, A. M., Musa, K. A., Jagaba, A. H., Shukor, M. Y., & Yakasai, H. M. (2023). Bioremediation of lead contaminated environment by Bacillus cereus strain BUK_BCH_BTE2: Isolation and characterization of the bacterium. Case Studies in Chemical and Environmental Engineering, 8, 100540.
https://doi.org/10.1016/j.cscee.2023.100540
[48]        Shahid, A., Pandey, C., Ahmad, F., & Kamal, A. (2021). Bacterial bioremediation: Strategies adopted by microbial-community to remediate lead from the environment. Journal of Applied Biology and Biotechnology, 9(6), 18–24.
https://doi.org/10.7324/JABB.2021.9602
[49]        Gouda, S. A., & Taha, A. (2023). Biosorption of heavy metals as a new alternative method for wastewater treatment: A review. Egyptian Journal of Aquatic Biology and Fisheries, 27(2), 135–153.
https://doi.org/10.21608/ejabf.2023.291671
[50]        Jhariya, U., Chien, M.-F., Umetsu, M., & Kamitakahara, M. (2025). New insights into immobilized bacterial systems for removal of heavy metals from wastewater. International Journal of Environmental Science and Technology.
https://doi.org/10.1007/s13762-025-06369-6
[51]        Li, X., Wang, L., Xu, R., Yang, Y., Yin, H., Jin, S., Huang, H., & He, J. (2022). Potentiality of phosphorus‐accumulating organisms biomasses in biosorption of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions: Behaviors and mechanisms. Chemosphere, 303, 135095.
https://doi.org/10.1016/j.chemosphere.2022.135095
[52]        Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in Microbiology, 13, 824084.
https://doi.org/10.3389/fmicb.2022.824084
[53]        Ghoniem, A. A., El-Naggar, N. E.-A., Saber, W. I. A., El-Hersh, M. S., & El-Khateeb, A. Y. (2020). Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Scientific Reports, 10(1), 9491.
https://doi.org/10.1038/s41598-020-66101-x
[54]        Jeyakumar, P., Debnath, C., Vijayaraghavan, R., & Muthuraj, M. (2022). Trends in bioremediation of heavy metal contaminations. Environmental Engineering Research, 28(4), 220631.
https://doi.org/10.4491/eer.2021.631
[55]        Nanda, M. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquatic Toxicology, 212, 1–10.
https://doi.org/10.1016/j.aquatox.2019.04.011
[56]        Joshi, S., Gangola, S., Bhandari, G., Bhandari, N. S., Nainwal, D., Rani, A., Malik, S., & Slama, P. (2023). Rhizospheric bacteria: The key to sustainable heavy metal detoxification strategies. Frontiers in Microbiology, 14, 1229828.
https://doi.org/10.3389/fmicb.2023.1229828
[57]        Benhalima, L., Amri, S., Bensouilah, M., & Ouzrout, R. (2020). Heavy metal resistance and metallothionein induction in bacteria isolated from Seybouse River, Algeria. Applied Ecology and Environmental Research, 18(1), 1721–1737.
https://doi.org/10.15666/aeer/1801_17211737
[58]        Glasauer, S. M., Beveridge, T. J., Burford, E. P., Harper, F. A., & Gadd, G. M. (2013). Metals and metalloids, transformation by microorganisms. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
https://doi.org/10.1016/B978-0-12-409548-9.05217-9
[59]        Gul, I., Adil, M., Lv, F., Li, T., Chen, Y., Lu, H., Ahamad, M. I., Lu, S., & Feng, W. (2024). Microbial strategies for lead remediation in agricultural soils and wastewater: Mechanisms, applications, and future directions. Frontiers in Microbiology, 15, 1434921.
https://doi.org/10.3389/fmicb.2024.1434921
[60]        You, W., Peng, W., Tian, Z., & Zheng, M. (2021). Uranium bioremediation with U(VI)-reducing bacteria. Science of the Total Environment, 798, 149107.
https://doi.org/10.1016/j.scitotenv.2021.149107
[61]        Gadd, G. (2001). Accumulation and transformation of metals by microorganisms. In Biotechnology: A Multi-Volume Comprehensive Treatise (Vol. 10, pp. 225–264). Wiley-VCH Verlag GmbH.
https://doi.org/10.1002/9783527620937.ch9k
[62]        Bang, S.-W., Clark, D. S., & Keasling, J. D. (2000). Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica Serovar Typhimurium in Escherichia coli. Applied and Environmental Microbiology, 66(9), 3939–3944.
https://doi.org/10.1128/AEM.66.9.3939-3944.2000
[63]        Sharma, P. K., Balkwill, D. L., Frenkel, A., & Vairavamurthy, M. A. (2000). A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Applied and Environmental Microbiology, 66(7), 3083–3087.
https://doi.org/10.1128/AEM.66.7.3083-3087.2000
[64]        Wróbel, M. (2023). Bioremediation of heavy metals by the genus Bacillus. International Journal of Environmental Research and Public Health, 20(6), 4964.
https://doi.org/10.3390/ijerph20064964
[65]        Jeremic, S., Beškoski, V. P., Djokic, L., Vasiljevic, B., Vrvić, M. M., Avdalović, J., Gojgić Cvijović, G., Beškoski, L. S., & Nikodinovic-Runic, J. (2016). Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. Journal of Environmental Management, 172, 151–161.
https://doi.org/10.1016/j.jenvman.2016.02.041
[66]        Liu, C., Ma, Q., Zhou, X., Lai, H., & Li, L. (2018). Bioleaching of heavy metals from sludge by mixed strains. IOP Conference Series: Earth and Environmental Science, 208, 012077.
https://doi.org/10.1088/1755-1315/208/1/012077
[67]        Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D., & Wright, T. L. (2010). The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy, 104(3–4), 342–350.
https://doi.org/10.1016/j.hydromet.2010.01.012
[68]        Rouchalova, D., Rouchalova, K., Janakova, I., Cablik, V., & Janstova, S. (2020). Bioleaching of iron, copper, lead, and zinc from the sludge mining sediment at different particle sizes, pH, and pulp density using Acidithiobacillus ferrooxidans. Minerals, 10(11), 1013.
https://doi.org/10.3390/min10111013
[69]        Wu, W., Liu, X., Zhang, X., Zhu, M., & Tan, W. (2018). Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresources and Bioprocessing, 5(1), 10.
https://doi.org/10.1186/s40643-018-0196-6
[70]        Das, G., Mondal, B., Ghosh, M., & Routh, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31.
https://doi.org/10.1016/j.jhazmat.2007.10.075
[71]        Rodríguez-Tirado, V., Green-Ruiz, C., & Gómez-Gil, B. (2012). Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chemical Engineering Journal, 181–182, 352–359.
https://doi.org/10.1016/j.cej.2011.11.091
[72]        Wierzba, S. (2015). Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Polish Journal of Chemical Technology, 17(1), 79–87.
https://doi.org/10.1515/pjct-2015-0012
[73]        Hu, N., Luo, Y., Song, J., Wu, L., & Zhang, H. (2010). Influences of soil organic matter, pH and temperature on Pb sorption by four soils in Yangtze River Delta. Acta Pedologica Sinica, 47(2), 246–252.
[74]        Fang, L., Zhou, C., Cai, P., Chen, W., Rong, X., Dai, K., Liang, W., Gu, J.-D., & Huang, Q. (2011). Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. Journal of Hazardous Materials, 190(1–3), 810–815.
https://doi.org/10.1016/j.jhazmat.2011.03.122
[75]        Abo-Alkasem, M. I., Hassan, N. H., & Abo Elsoud, M. M. (2023). Microbial bioremediation as a tool for the removal of heavy metals. Bulletin of the National Research Centre, 47(1), 31.
https://doi.org/10.1186/s42269-023-01006-z
[76]        Acar, F. (2004). The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. Bioresource Technology, 94(1), 13–15.
https://doi.org/10.1016/j.biortech.2003.10.032
[77]        Tyagi, S., Kumar, V., Singh, J., Teotia, P., Bisht, S., & Sharma, S. (2014). Bioremediation of pulp and paper mill effluent by dominant aboriginal microbes and their consortium. International Journal of Environmental Research, 8(3), 561–568.
https://doi.org/10.22059/IJER.2014.750
[78]        Park, J. H., Lee, S.-J., Lee, M.-E., & Chung, J. W. (2016). Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar. Environmental Science: Processes & Impacts, 18(4), 514–520.
https://doi.org/10.1039/C6EM00098C
[79]        Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645.
https://doi.org/10.1016/j.jhazmat.2008.06.042
[80]        Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180.
https://doi.org/10.1007/s11274-016-2137-x
[81]        Dong, D., Sun, H., Qi, Z., & Liu, X. (2021). Improving microbial bioremediation efficiency of intensive aquacultural wastewater based on bacterial pollutant metabolism kinetics analysis. Chemosphere, 265, 129151.
https://doi.org/10.1016/j.chemosphere.2020.129151
[82]        Karnwal, A., Martolia, S., Dohroo, A., Al-Tawaha, A. R. M. S., & Malik, T. (2024). Exploring bioremediation strategies for heavy metals and POPs pollution: The role of microbes, plants, and nanotechnology. Frontiers in Environmental Science, 12.
https://doi.org/10.3389/fenvs.2024.1397850
[83]        Marquiegui-Alvaro, A., Kottara, A., Chacón, M., Cliffe, L., Brockhurst, M., & Dixon, N. (2025). Genetic bioaugmentation‐mediated bioremediation of terephthalate in soil microcosms using an engineered environmental plasmid. Microbial Biotechnology, 18(1).
https://doi.org/10.1111/1751-7915.70071
[84]        Huang, X., Zhang, R., Cui, M., & Lai, H. (2022). Experimental investigation on bioremediation of heavy metal contaminated solution by Sporosarcina pasteurii under some complex conditions. Water, 14(4), 595.
https://www.mdpi.com/2073-4441/14/4/595
[85]        Nandy, S., Andraskar, J., Lanjewar, K., & Kapley, A. (2021). Challenges in bioremediation: From lab to land. In Bioremediation for Environmental Sustainability (pp. 561–583). Elsevier.
https://doi.org/10.1016/B978-0-12-820524-2.00023-7
[86]        Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154–171.
https://doi.org/10.1016/j.wmb.2024.07.005
[87]        Madison, A. S., Sorsby, S. J., Wang, Y., & Key, T. A. (2023). Increasing in situ bioremediation effectiveness through field-scale application of molecular biological tools. Frontiers in Microbiology, 13.
https://doi.org/10.3389/fmicb.2022.1005871
[88]        Aquino, E., Barbieri, C., & Oller Nascimento, C. A. (2011). Engineering bacteria for bioremediation. In Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. InTech.
https://doi.org/10.5772/19546
[89]        Pereira, L. C. C., Sousa, N. do S. da S., Silva, B. R. P. da, Costa, A. L. B. da, Cavalcante, F. R. B., Rodrigues, L. M. dos S., Freitas, A. A. da S., Gomes, A. C. C., & Dias, F. C. da S. (2023). Influence of anthropogenic activities on the water quality of an urban river in an unplanned zone of the Amazonian coast. Limnological Review, 23(2), 108–125.
https://doi.org/10.3390/limnolrev23020007
[90]        Wang, Y., Li, Y., Liang, J., Bi, Y., Wang, S., & Shang, Y. (2021). Climatic changes and anthropogenic activities driving the increase in nitrogen: Evidence from the South-to-North water diversion project. Water, 13(18), 2517.
https://www.mdpi.com/2073-4441/13/18/2517
[91]        Yudhistira, M. H., Karimah, I. D., & Maghfira, N. R. (2022). The effect of port development on coastal water quality: Evidence of eutrophication states in Indonesia. Ecological Economics, 196, 107415.
https://doi.org/10.1016/j.ecolecon.2022.107415
[92]        Li, L., Liu, Z., Meng, D., Liu, X., Li, X., Zhang, M., Tao, J., Gu, Y., Zhong, S., & Yin, H. (2019). Comparative genomic analysis reveals the distribution, organization, and evolution of metal resistance genes in the genus Acidithiobacillus. In S.-J. Liu (Ed.), Applied and Environmental Microbiology, 85(2).
https://doi.org/10.1128/AEM.02153-18
[93]        Sun, W., Sun, X., Li, B., Xu, R., Young, L. Y., Dong, Y., Li, Y., Wang, C., & Zhao, Y. (2020). Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance. Environmental International, 138, 105620.
https://doi.org/10.1016/j.envint.2020.105620
[94]        Li, L., Meng, D., Yin, H., Zhang, T., & Liu, Y. (2023). Genome-resolved metagenomics provides insights into the ecological roles of the keystone taxa in heavy-metal-contaminated soils. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1203164
[95]        Chen, H., Min, F., Hu, X., Ma, D., & Huo, Z. (2023). Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. Journal of Hazardous Materials, 452, 131176.
https://doi.org/10.1016/j.jhazmat.2023.131176
[96]        Duan, L., Wang, Q., Li, J., Wang, F., Yang, H., Guo, B., & Hashimoto, Y. (2022). Zero valent iron or Fe₃O₄-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth. Environmental Pollution, 308, 119702.
https://doi.org/10.1016/j.envpol.2022.119702
[97]        Karthika, P., Dinesh, G. K., Elakkya, M., Palanisamy, K., Elangovan, A., & Soni, R. (2024). Metagenomics for mitigation of heavy metal toxicity in plants. In Current Omics Advancement in Plant Abiotic Stress Biology (pp. 383–396). Elsevier.
https://doi.org/10.1016/B978-0-443-21625-1.00026-9
[98]        Zhao, X., Teng, Z., Wang, G., Luo, W., Guo, Y., Ji, X., Xu, Y., & Li, H. (2023). Anaerobic syntrophic system composed of phosphate solubilizing bacteria and dissimilatory iron reducing bacteria induces cadmium immobilization via secondary mineralization. Journal of Hazardous Materials, 446, 130702.
https://doi.org/10.1016/j.jhazmat.2022.130702
[99]        Chen, H., Jiang, H., Nazhafati, M., Li, L., & Jiang, J. (2023). Biochar: An effective measure to strengthen phosphorus solubilizing microorganisms for remediation of heavy metal pollution in soil. Frontiers in Bioengineering and Biotechnology, 11.
https://doi.org/10.3389/fbioe.2023.1127166
[100]      Xie, L., Zhu, G., Shang, J., Chen, X., Zhang, C., Ji, X., Zhang, Q., & Wei, Y. (2021). An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell Signalling, 87(August), 110122.
https://doi.org/10.1016/j.cellsig.2021.110122
[101]      Tu, C., Wei, J., Guan, F., Liu, Y., Sun, Y., & Luo, Y. (2020). Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environment International, 137, 105576.
https://doi.org/10.1016/j.envint.2020.105576
[102]      Yadav, N., Jyoti, Thakur, I. S., & Srivastava, S. (2023). Omics approach in bioremediation of heavy metals (HMs) in industrial wastewater. In Genomics Approach to Bioremediation (pp. 343–361). Wiley.
https://doi.org/10.1002/9781119852131.ch18
[103]      Malik, S., Kishore, S., Shah, M. P., & Kumar, S. A. (2022). A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater. Journal of Basic Microbiology, 62(3–4), 361–375.
https://doi.org/10.1002/jobm.202100555
[104]      Liu, M., Li, Z., Chen, Z., Qi, X., Yang, L., & Chen, G. (2022). Simultaneous biodetection and bioremediation of Cu²⁺ from industrial wastewater by bacterial cell surface display system. International Biodeterioration & Biodegradation, 173, 105467.
https://doi.org/10.1016/j.ibiod.2022.105467
[105]      Zhu, N., Zhang, B., & Yu, Q. (2020). Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Applied Materials & Interfaces, 12(20), 22948–22957.
https://doi.org/10.1021/acsami.0c04512
[106]      Thai, T. D., Lim, W., & Na, D. (2023). Synthetic bacteria for the detection and bioremediation of heavy metals. Frontiers in Bioengineering and Biotechnology, 11.
https://doi.org/10.3389/fbioe.2023.1178680
[107]      Mohamed, E. S., Jalhoum, M. E. M., Hendawy, E., El-Adly, A. M., Nawar, S., Rebouh, N. Y., Saleh, A., & Shokr, M. S. (2024). Geospatial evaluation and bio-remediation of heavy metal-contaminated soils in arid zones. Frontiers in Environmental Science, 12.
https://doi.org/10.3389/fenvs.2024.1381409
[108]      Jusufi, K., Ejupi, A., Demaku, S., & Maliqi, E. (2024). Monitoring heavy metals and spatial analysis using pollution indices and cartographic visualization: A case study in Kosovo. Soil and Sediment Contamination: An International Journal, 1–18.
https://doi.org/10.1080/15320383.2024.2430268
[109]      Saravanan, P., Saravanan, V., Rajeshkannan, R., Arnica, G., Rajasimman, M., & Baskar, G. (2024). Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environmental Research, 258, 119440.
https://doi.org/10.1016/j.envres.2024.119440