[1] Almaktar, M., & Shaaban, M. (2021). Prospects of renewable energy as a non-rivalry energy alternative in Libya. Renewable and Sustainable Energy Reviews, 143, 110852.
https://doi.org/10.1016/j.rser.2021.110852
[2] Molnár, É., Rippel-Pethő, D., Horváth, G., Hodai, Z., Bocsi, R., & Bobek, J. (2016). Benefits of jet reactor application in alkaline gas purification. Periodica Polytechnica Chemical Engineering, 60(2), 74-77.
https://doi.org/10.3311/PPch.8261
[3] Tengku Hassan, T. N., Shariff, A. M., Mohd Pauzi, M. M., Khidzir, M. S., & Surmi, A. (2022). Insights on cryogenic distillation technology for simultaneous CO2 and H2S removal for sour gas fields. Molecules, 27(4), 1424.
https://doi.org/10.3390/molecules27041424
[4] Sikarwar, P., Gosu, V., & Subbaramaiah, V. (2019). An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. Reviews in Chemical Engineering, 35(6), 669-705.
https://doi.org/10.1515/revce-2017-0082
[5] Wagle, D. V., Zhao, H., Deakyne, C. A., & Baker, G. A. (2018). Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel. ACS Sustainable Chemistry & Engineering, 6(6), 7525-7531.
https://doi.org/10.1021/acssuschemeng.8b00224
[6] Martzoukou, O., Mamma, D., & Hatzinikolaou, D. G. (2023). Medium composition overturns the widely accepted sulfate-dependent repression of desulfurization phenotype in Rhodococcus qingshengii IGTS8. Biotechnology and Bioengineering, 120(10), 3092-3098.
https://doi.org/10.1002/bit.28436
[7] Rawlings, D. E. (2002). Heavy metal mining using microbes. Annual Review of Microbiology, 56(1), 65-91.
https://doi.org/10.1146/annurev.micro.56.012302.161052
[8] Nguyen, P. M., Do, P. T., Pham, Y. B., Doan, T. O., Nguyen, X. C., Lee, W. K., & Ngo, H. H. (2022). Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Science of the Total Environment, 852, 158203.
https://doi.org/10.1016/j.scitotenv.2022.158203
[9] Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246-1259.
https://doi.org/10.1016/j.biotechadv.2015.02.007
[10] Valentin-Alvarado, L.E., Fakra, S.C., Probst, A.J., Giska, J.R., Jaffe, A.L., Oltrogge, L.M., West-Roberts, J., Rowland, J., Manga, M., Savage, D.F., & Greening, C. (2024). Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. Microbiome, 12(1), 15.
https://doi.org/10.1101/2022.11.17.516901
[11] Hu, T., Yang, Y., Zhang, M., Gao, Y., Cheng, Q., & Ji, H. (2019). Biodesulfurization of coal using Rhodococcus erythropolis SX-12 and Acidithiobacillus ferrooxidans GF: A two-step approach. Energy Science & Engineering, 7(1), 162-169.
https://doi.org/10.1002/ese3.266
[12] Ibáñez, A., Garrido-Chamorro, S., Coque, J. J., & Barreiro, C. (2023). From genes to bioleaching: Unraveling sulfur metabolism in Acidithiobacillus genus. Genes, 14(9), 1772.
https://doi.org/10.3390/genes14091772
[13] Zhang, R., Wei, X., Hao, Q., & Si, R. (2020). Bioleaching of heavy metals from municipal solid waste incineration fly ash: Availability of recoverable sulfur prills and form transformation of heavy metals. Metals, 10(6), 815.
https://doi.org/10.3390/met10060815
[14] Meyer, B., Imhoff, J. F., & Kuever, J. (2007). Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 9(12), 2957-2977.
https://doi.org/10.1111/j.1462-2920.2007.01407.x
[15] Hajizadeh, M., Pourahmad, F., & Nemati, M. (2023). Isolation and screening of antibacterial activity of Actinomycetota from the medicinal plant, Anthemis pseudocotula Boiss. Archives of Razi Institute, 78(5), 1638-1646.
https://doi.org/10.22092/ari.2023.78.5.1638
[16] Dees, S. B., & Moss, C. W. (1978). Identification of Achromobacter species by cellular fatty acids and by production of keto acids. Journal of Clinical Microbiology, 8(1), 61-66.
https://doi.org/10.1128/jcm.8.1.61-66.1978
[17] Lacey, H. J., & Rutledge, P. J. (2022). Recently discovered secondary metabolites from Streptomyces species. Molecules, 27(3), 887. https://doi.org/10.3390/molecules27030887
[18] Yang, Z., Liu, Z., Sklodowska, A., Musialowski, M., Bajda, T., Yin, H., & Drewniak, L. (2021). Microbiological sulfide removal—from microorganism isolation to treatment of industrial effluent. Microorganisms, 9(3), 611.
https://doi.org/10.3390/microorganisms9030611
[19] Borse, K., Agnihotri, V., Bhandarkar, H., & Bhardwaj, S. (2021). Effective sulfur oxidizing bacterial isolation from process wastewater of food industry. Plant Archives, 21(1), 1595-1604.
https://doi.org/10.51470/PLANTARCHIVES.2021.V21.S1.252
[20] Strnad, H., Ridl, J., Paces, J., Kolar, M., Vlcek, C., & Paces, V. (2011). Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. Journal of Bacteriology, 193(3), 791-792.
https://doi.org/10.1128/JB.01299-10
[21] Rodrigues-dos Santos, A. S., Rebelo-Romão, I., Zhang, H., & Vílchez, J. I. (2022). Discerning transcriptomic and biochemical responses of Arabidopsis thaliana treated with the biofertilizer strain Priestia megaterium YC4-R4: Boosting plant central and secondary metabolism. Plants, 11(22), 3039.
https://doi.org/10.3390/plants11223039
[22] Greenway, R., Barts, N., Henpita, C., Brown, A. P., Arias Rodriguez, L., Rodríguez Peña, C. M., & Tobler, M. (2020). Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proceedings of the National Academy of Sciences, 117(28), 16424-16430.
https://doi.org/10.1111/jeb.13727
[23] Kushkevych, I., Procházka, V., Vítězová, M., Dordević, D., Abd El-Salam, M., & Rittmann, S. K. (2024). Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Frontiers in Microbiology, 15, 1417714.
https://doi.org/10.3389/fmicb.2024.1417714
[24] Birkeland, N. K. (2005). Sulfate-reducing bacteria and archaea. In Petroleum Microbiology (pp. 35-54).
https://doi.org/10.1128/9781555817589.ch3
[25] Murthy, S., Govardhana, M., Satyan, K. B., & Sharma, G. (2024). Whole genome sequencing and comparative genomic studies of Priestia filamentosa JURBA-X for its drought-tolerance, plant-growth promotion, and fluorescent characteristics. bioRxiv, 2024-04.
https://doi.org/10.1101/2024.04.09.588649
[26] Saravanan, A., Kumar, P. S., Vo, D. V., Jeevanantham, S., Karishma, S., & Yaashikaa, P. R. (2021). A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. Journal of Hazardous Materials, 419, 126451.
https://doi.org/10.1016/j.jhazmat.2021.126451
[27] Medaura, M. C., Guivernau, M., Moreno-Ventas, X., Prenafeta-Boldú, F. X., & Viñas, M. (2021). Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Frontiers in Microbiology, 12, 626436.
https://doi.org/10.3389/fmicb.2021.626436
[28] Ren, W., Zhong, Y., Ding, Y., Wu, Y., Xu, X., & Zhou, P. (2022). Mismatches in 16S rRNA gene primers: An area worth further exploring. Frontiers in Microbiology, 13, 888803.
https://doi.org/10.3389/fmicb.2022.888803
[29] Hügler, M., Gärtner, A., & Imhoff, J. F. (2010). Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiology Ecology, 73(3), 526-537.
https://doi.org/10.1111/j.1574-6941.2010.00919.x
[30] Wang, R., Lin, J. Q., Liu, X. M., Pang, X., Zhang, C. J., Yang, C. L., & Chen, L. X. (2019). Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Frontiers in Microbiology, 9, 3290.
https://doi.org/10.3389/fmicb.2018.03290
[31] Lin, X., Feng, X., Wang, X., Long, H., Crowe, S. A., & Luo, H. (2024). Sulfur oxidation through rDsr in a novel Sox-free marine Roseobacter lineage. BioRxiv, 2024-06.
https://doi.org/10.1101/2024.06.14.599071
[32] Hügler, M., Gärtner, A., & Imhoff, J. F. (2010). Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiology Ecology, 73(3), 526-537.
https://doi.org/10.1111/j.1574-6941.2010.00919.x
[33] Jørgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology, 10, 849.
https://doi.org/10.3389/fmicb.2019.00849
[34] Zhuang, X., Wang, S., & Wu, S. (2024). Electron transfer in the biogeochemical sulfur cycle. Life, 14(5), 591.
https://doi.org/10.3390/life14050591
[35] Boonyawanich, S., Prommeenate, P., Oaew, S., Pisutpaisal, N., & Haosagul, S. (2024). Hydrogen sulfide oxidizing microbiome in biogas-stream fed biofilter in palm oil factory. Nature Environment and Pollution Technology, 23(2).
https://doi.org/10.46488/nept.2024.v23i02.017
[36] Seele, P., & Lock, I. (2017). The game-changing potential of digitalization for sustainability: Possibilities, perils, and pathways. Sustainability Science, 12, 183-185.
https://doi.org/10.1007/s11625-017-0426-4
[37] Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 5029.
https://doi.org/10.1038/s41467-019-13036-1
[38] Eamsakulrat, P., Santanirand, P., & Phuphuakrat, A. (2022). Diagnostic yield and impact on antimicrobial management of 16S rRNA testing of clinical specimens. Microbiology Spectrum, 10(6), e02094-22.
https://doi.org/10.1128/spectrum.02094-22
[39] Sato, M., & Miyazaki, K. (2017). Phylogenetic network analysis revealed the occurrence of horizontal gene transfer of 16S rRNA in the genus Enterobacter. Frontiers in Microbiology, 8, 2225.
https://doi.org/10.3389/fmicb.2017.02225
[40] Nair, S. R., & Wen, J. (2019). Uncertainties in sour natural gas dispersion modelling. Chemical Engineering Transactions, 77.
https://doi.org/10.3303/CET1977060
[41] Sherar, B. W., Ellis, P., & Ning, J. (2021). Improved high-pressure, high-temperature (HPHT) materials qualification using dissolved H2S concentration as the sour service scalable metric. Corrosion, 77(11), 1218-1232.
https://doi.org/10.5006/3867
[42] Peighami, R., Rasekh, B., Motamedian, E., Yazdian, F., & Khodaverdi, H. (2022). Investigating the ability of sulfur oxidizing strains in biodesulfurisation of sulfide-containing streams, screening the most capable strain and determining the optimum condition for elemental sulfur recovery from sulfide using response surface method. Fuel, 309, 121985.
https://doi.org/10.1016/j.fuel.2021.121985
[43] Canfield, D. E., Stewart, F. J., Thamdrup, B., De Brabandere, L., Dalsgaard, T., Delong, E. F., & Ulloa, O. (2010). A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330(6009), 1375-1378.
https://doi.org/10.1126/science.1196889
[44] Pourbabaee, A. A., Koohbori Dinekaboodi, S., Seyed Hosseini, H. M., Alikhani, H. A., & Emami, S. (2020). Potential application of selected sulfur-oxidizing bacteria and different sources of sulfur in plant growth promotion under different moisture conditions. Communications in Soil Science and Plant Analysis, 51(6), 735-745.
https://doi.org/10.1080/00103624.2020.1729377
[45] Zhang, Y., Wang, X., Zhen, Y., Mi, T., He, H., & Yu, Z. (2017). Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Frontiers in Microbiology, 8, 2133.
https://doi.org/10.3389/fmicb.2017.02133
[46] Tian, H., Gao, P., Chen, Z., Li, Y., Li, Y., & Wang, Y. (2017). Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Frontiers in Microbiology, 8, 143.
https://doi.org/10.3389/fmicb.2017.00143
[47] Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., & Malonia, S. K. (2023). Next-generation sequencing technology: current trends and advancements. Biology, 12(7), 997.
https://doi.org/10.3390/biology12070997