Isolation and characterization of sulfur-oxidizing bacteria at the Ilam gas refinery in Iran

Document Type : Research Paper

Authors

1 Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, P. O. Box: 69315516, Ilam, Iran

2 Higher Education Institute of Safir Danesh, Ilam, Iran

Abstract

Natural gas is a critical energy resource, but sour gas, characterized by high hydrogen sulfide (H₂S) content, poses significant environmental and operational challenges, including corrosion, toxicity, and air pollution. Conventional desulfurization methods, such as hydrodesulfurization (HDS), are energy-intensive and environmentally taxing. Biodesulfurization (BDS) using sulfur-oxidizing bacteria (SOB) offers a sustainable alternative. This study, the first to characterize SOB from the Ilam Gas Refinery in Iran, aimed to isolate and identify SOB from soil samples to explore their potential for biodesulfurization and bioremediation. Soil samples were collected from various locations within the Ilam Gas Refinery, and 16 bacterial isolates were obtained using media enriched with sulfur compounds and sulfur-enriched media. The isolates were purified and characterized through Gram staining and molecular identification using 16S rRNA gene sequencing. Phylogenetic analysis was conducted to understand the evolutionary relationships among the isolated bacteria. The isolates were purified, characterized through Gram staining, 16S rRNA gene sequencing, and phylogenetic analysis. Sixteen bacterial isolates were cultivated, with 11 successfully identified through 16S rRNA gene sequencing. The identified species included Achromobacter xylosoxidans, Sphingomonas paucimobilis, Streptomyces babili, and Priestia megaterium. These species, particularly S. babili and P. megaterium, are less commonly associated with gas refinery environments, highlighting the novelty of this study. Statistical analyses confirmed a significant predominance of Gram-negative bacteria (p < 0.05). The study also identified the potential of these bacteria in the bioremediation process. The inability to amplify the soxB gene suggests alternative sulfur oxidation pathways, warranting further investigation. The findings provide a foundation for developing microbial-based solutions that are efficient, cost-effective and environmentally sustainable.

Graphical Abstract

Isolation and characterization of sulfur-oxidizing bacteria at the Ilam gas refinery in Iran

Keywords

Main Subjects


[1]          Almaktar, M., & Shaaban, M. (2021). Prospects of renewable energy as a non-rivalry energy alternative in Libya. Renewable and Sustainable Energy Reviews, 143, 110852.
 https://doi.org/10.1016/j.rser.2021.110852
[2]          Molnár, É., Rippel-Pethő, D., Horváth, G., Hodai, Z., Bocsi, R., & Bobek, J. (2016). Benefits of jet reactor application in alkaline gas purification. Periodica Polytechnica Chemical Engineering, 60(2), 74-77.
https://doi.org/10.3311/PPch.8261
[3]          Tengku Hassan, T. N., Shariff, A. M., Mohd Pauzi, M. M., Khidzir, M. S., & Surmi, A. (2022). Insights on cryogenic distillation technology for simultaneous CO2 and H2S removal for sour gas fields. Molecules, 27(4), 1424.
https://doi.org/10.3390/molecules27041424
[4]          Sikarwar, P., Gosu, V., & Subbaramaiah, V. (2019). An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. Reviews in Chemical Engineering, 35(6), 669-705.
https://doi.org/10.1515/revce-2017-0082
[5]          Wagle, D. V., Zhao, H., Deakyne, C. A., & Baker, G. A. (2018). Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel. ACS Sustainable Chemistry & Engineering, 6(6), 7525-7531.
https://doi.org/10.1021/acssuschemeng.8b00224
[6]          Martzoukou, O., Mamma, D., & Hatzinikolaou, D. G. (2023). Medium composition overturns the widely accepted sulfate-dependent repression of desulfurization phenotype in Rhodococcus qingshengii IGTS8. Biotechnology and Bioengineering, 120(10), 3092-3098.
https://doi.org/10.1002/bit.28436
[7]          Rawlings, D. E. (2002). Heavy metal mining using microbes. Annual Review of Microbiology, 56(1), 65-91.
https://doi.org/10.1146/annurev.micro.56.012302.161052
[8]          Nguyen, P. M., Do, P. T., Pham, Y. B., Doan, T. O., Nguyen, X. C., Lee, W. K., & Ngo, H. H. (2022). Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Science of the Total Environment, 852, 158203.
https://doi.org/10.1016/j.scitotenv.2022.158203
[9]          Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246-1259.
https://doi.org/10.1016/j.biotechadv.2015.02.007
[10]        Valentin-Alvarado, L.E., Fakra, S.C., Probst, A.J., Giska, J.R., Jaffe, A.L., Oltrogge, L.M., West-Roberts, J., Rowland, J., Manga, M., Savage, D.F., & Greening, C. (2024). Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. Microbiome, 12(1), 15.
https://doi.org/10.1101/2022.11.17.516901
[11]        Hu, T., Yang, Y., Zhang, M., Gao, Y., Cheng, Q., & Ji, H. (2019). Biodesulfurization of coal using Rhodococcus erythropolis SX-12 and Acidithiobacillus ferrooxidans GF: A two-step approach. Energy Science & Engineering, 7(1), 162-169.
https://doi.org/10.1002/ese3.266
[12]        Ibáñez, A., Garrido-Chamorro, S., Coque, J. J., & Barreiro, C. (2023). From genes to bioleaching: Unraveling sulfur metabolism in Acidithiobacillus genus. Genes, 14(9), 1772.
https://doi.org/10.3390/genes14091772
[13]        Zhang, R., Wei, X., Hao, Q., & Si, R. (2020). Bioleaching of heavy metals from municipal solid waste incineration fly ash: Availability of recoverable sulfur prills and form transformation of heavy metals. Metals, 10(6), 815.
https://doi.org/10.3390/met10060815
[14]        Meyer, B., Imhoff, J. F., & Kuever, J. (2007). Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 9(12), 2957-2977.
https://doi.org/10.1111/j.1462-2920.2007.01407.x
[15]        Hajizadeh, M., Pourahmad, F., & Nemati, M. (2023). Isolation and screening of antibacterial activity of Actinomycetota from the medicinal plant, Anthemis pseudocotula Boiss. Archives of Razi Institute, 78(5), 1638-1646.
https://doi.org/10.22092/ari.2023.78.5.1638
[16]        Dees, S. B., & Moss, C. W. (1978). Identification of Achromobacter species by cellular fatty acids and by production of keto acids. Journal of Clinical Microbiology, 8(1), 61-66.
https://doi.org/10.1128/jcm.8.1.61-66.1978
[17]        Lacey, H. J., & Rutledge, P. J. (2022). Recently discovered secondary metabolites from Streptomyces species. Molecules, 27(3), 887. https://doi.org/10.3390/molecules27030887
[18]        Yang, Z., Liu, Z., Sklodowska, A., Musialowski, M., Bajda, T., Yin, H., & Drewniak, L. (2021). Microbiological sulfide removal—from microorganism isolation to treatment of industrial effluent. Microorganisms, 9(3), 611.
https://doi.org/10.3390/microorganisms9030611
[19]        Borse, K., Agnihotri, V., Bhandarkar, H., & Bhardwaj, S. (2021). Effective sulfur oxidizing bacterial isolation from process wastewater of food industry. Plant Archives, 21(1), 1595-1604.
https://doi.org/10.51470/PLANTARCHIVES.2021.V21.S1.252
[20]        Strnad, H., Ridl, J., Paces, J., Kolar, M., Vlcek, C., & Paces, V. (2011). Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. Journal of Bacteriology, 193(3), 791-792.
https://doi.org/10.1128/JB.01299-10
[21]        Rodrigues-dos Santos, A. S., Rebelo-Romão, I., Zhang, H., & Vílchez, J. I. (2022). Discerning transcriptomic and biochemical responses of Arabidopsis thaliana treated with the biofertilizer strain Priestia megaterium YC4-R4: Boosting plant central and secondary metabolism. Plants, 11(22), 3039.
https://doi.org/10.3390/plants11223039
[22]        Greenway, R., Barts, N., Henpita, C., Brown, A. P., Arias Rodriguez, L., Rodríguez Peña, C. M., & Tobler, M. (2020). Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proceedings of the National Academy of Sciences, 117(28), 16424-16430.
https://doi.org/10.1111/jeb.13727
[23]        Kushkevych, I., Procházka, V., Vítězová, M., Dordević, D., Abd El-Salam, M., & Rittmann, S. K. (2024). Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Frontiers in Microbiology, 15, 1417714.
https://doi.org/10.3389/fmicb.2024.1417714
[24]        Birkeland, N. K. (2005). Sulfate-reducing bacteria and archaea. In Petroleum Microbiology (pp. 35-54).
https://doi.org/10.1128/9781555817589.ch3
[25]        Murthy, S., Govardhana, M., Satyan, K. B., & Sharma, G. (2024). Whole genome sequencing and comparative genomic studies of Priestia filamentosa JURBA-X for its drought-tolerance, plant-growth promotion, and fluorescent characteristics. bioRxiv, 2024-04.
https://doi.org/10.1101/2024.04.09.588649
[26]        Saravanan, A., Kumar, P. S., Vo, D. V., Jeevanantham, S., Karishma, S., & Yaashikaa, P. R. (2021). A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. Journal of Hazardous Materials, 419, 126451.
https://doi.org/10.1016/j.jhazmat.2021.126451
[27]        Medaura, M. C., Guivernau, M., Moreno-Ventas, X., Prenafeta-Boldú, F. X., & Viñas, M. (2021). Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Frontiers in Microbiology, 12, 626436.
https://doi.org/10.3389/fmicb.2021.626436
[28]        Ren, W., Zhong, Y., Ding, Y., Wu, Y., Xu, X., & Zhou, P. (2022). Mismatches in 16S rRNA gene primers: An area worth further exploring. Frontiers in Microbiology, 13, 888803.
https://doi.org/10.3389/fmicb.2022.888803
[29]        Hügler, M., Gärtner, A., & Imhoff, J. F. (2010). Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiology Ecology, 73(3), 526-537.
https://doi.org/10.1111/j.1574-6941.2010.00919.x
[30]        Wang, R., Lin, J. Q., Liu, X. M., Pang, X., Zhang, C. J., Yang, C. L., & Chen, L. X. (2019). Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Frontiers in Microbiology, 9, 3290.
https://doi.org/10.3389/fmicb.2018.03290
[31]        Lin, X., Feng, X., Wang, X., Long, H., Crowe, S. A., & Luo, H. (2024). Sulfur oxidation through rDsr in a novel Sox-free marine Roseobacter lineage. BioRxiv, 2024-06.
https://doi.org/10.1101/2024.06.14.599071
[32]        Hügler, M., Gärtner, A., & Imhoff, J. F. (2010). Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiology Ecology, 73(3), 526-537.
https://doi.org/10.1111/j.1574-6941.2010.00919.x
[33]        Jørgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology, 10, 849.
https://doi.org/10.3389/fmicb.2019.00849
[34]        Zhuang, X., Wang, S., & Wu, S. (2024). Electron transfer in the biogeochemical sulfur cycle. Life, 14(5), 591.
https://doi.org/10.3390/life14050591
[35]        Boonyawanich, S., Prommeenate, P., Oaew, S., Pisutpaisal, N., & Haosagul, S. (2024). Hydrogen sulfide oxidizing microbiome in biogas-stream fed biofilter in palm oil factory. Nature Environment and Pollution Technology, 23(2).
https://doi.org/10.46488/nept.2024.v23i02.017
[36]        Seele, P., & Lock, I. (2017). The game-changing potential of digitalization for sustainability: Possibilities, perils, and pathways. Sustainability Science, 12, 183-185.
https://doi.org/10.1007/s11625-017-0426-4
[37]        Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 5029.
https://doi.org/10.1038/s41467-019-13036-1
[38]        Eamsakulrat, P., Santanirand, P., & Phuphuakrat, A. (2022). Diagnostic yield and impact on antimicrobial management of 16S rRNA testing of clinical specimens. Microbiology Spectrum, 10(6), e02094-22.
https://doi.org/10.1128/spectrum.02094-22
[39]        Sato, M., & Miyazaki, K. (2017). Phylogenetic network analysis revealed the occurrence of horizontal gene transfer of 16S rRNA in the genus Enterobacter. Frontiers in Microbiology, 8, 2225.
https://doi.org/10.3389/fmicb.2017.02225
[40]        Nair, S. R., & Wen, J. (2019). Uncertainties in sour natural gas dispersion modelling. Chemical Engineering Transactions, 77.
https://doi.org/10.3303/CET1977060
[41]        Sherar, B. W., Ellis, P., & Ning, J. (2021). Improved high-pressure, high-temperature (HPHT) materials qualification using dissolved H2S concentration as the sour service scalable metric. Corrosion, 77(11), 1218-1232.
https://doi.org/10.5006/3867
[42]        Peighami, R., Rasekh, B., Motamedian, E., Yazdian, F., & Khodaverdi, H. (2022). Investigating the ability of sulfur oxidizing strains in biodesulfurisation of sulfide-containing streams, screening the most capable strain and determining the optimum condition for elemental sulfur recovery from sulfide using response surface method. Fuel, 309, 121985.
https://doi.org/10.1016/j.fuel.2021.121985
[43]        Canfield, D. E., Stewart, F. J., Thamdrup, B., De Brabandere, L., Dalsgaard, T., Delong, E. F., & Ulloa, O. (2010). A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330(6009), 1375-1378.
https://doi.org/10.1126/science.1196889
[44]        Pourbabaee, A. A., Koohbori Dinekaboodi, S., Seyed Hosseini, H. M., Alikhani, H. A., & Emami, S. (2020). Potential application of selected sulfur-oxidizing bacteria and different sources of sulfur in plant growth promotion under different moisture conditions. Communications in Soil Science and Plant Analysis, 51(6), 735-745.
https://doi.org/10.1080/00103624.2020.1729377
[45]        Zhang, Y., Wang, X., Zhen, Y., Mi, T., He, H., & Yu, Z. (2017). Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Frontiers in Microbiology, 8, 2133.
https://doi.org/10.3389/fmicb.2017.02133
[46]        Tian, H., Gao, P., Chen, Z., Li, Y., Li, Y., & Wang, Y. (2017). Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Frontiers in Microbiology, 8, 143.
https://doi.org/10.3389/fmicb.2017.00143
[47]        Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., & Malonia, S. K. (2023). Next-generation sequencing technology: current trends and advancements. Biology, 12(7), 997.
https://doi.org/10.3390/biology12070997