Recycling spent lithium-ion batteries: A holistic approach for addressing environmental challenges and resource recovery

Document Type : Review Paper

Authors

1 Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India

2 Independent Researcher, Juba, Central Equatorial, South Sudan

Abstract

The globally projected share of Lithium-Ion Batteries (LIB) in the market will be around 875 million tons by 2025, leading to the generation of a tremendous amount of spent LIB trash to be dealt with. However, literature shows that only a tiny fraction of spent LIB is recycled currently, while the majority ends up in landfills, leading to environmental degradation. Though there is existing literature discussing the research trend and methods for recycling spent LIBs, very few reviews cover a comprehensive comparison of all the recycling methods along with the pretreatments. The major objective of the paper is to provide a comprehensive overview of the research landscape regarding LIB recycling, emphasizing the significant advancements in the field and valuable insights into the latest developments in LIB recycling technologies through a critical review of the recent and highly cited literature for spent LIB recycling. The paper focuses on three primary recycling approaches: pyro-metallurgical, hydrometallurgical, and direct recycling. The paper also covers major LIB types, analytical methods, spent LIB disposal challenges, the need for recovery of heavy metals, and pretreatment methods for LIB waste recycling. The paper further discusses the characterization techniques for leachates generated during hydrometallurgical processes, revealing the presence of various metals such as Al, Co, Cu, Fe, Li, Mn, and Ni. The detailed systematic review thus highlights the LIB recycling prospects and obstacles, and further research required to stimulate the creation of inventive and long-lasting solutions for a circular economy leading to sustainable development.

Graphical Abstract

Recycling spent lithium-ion batteries: A holistic approach for addressing environmental challenges and resource recovery

Keywords

Main Subjects


[1]          Abdelbasir, S. M., Fayed, M. G., Elseman, A. M., & Mohamed, S. G. (2024). Waste-derived nickel oxide and selenide/selenite nanoparticles for energy-storage applications. Journal of Energy Storage, 84, 110707.
https://doi.org/10.1016/j.est.2024.110707
[2]          IEA, A. (2024). Global EV outlook 2024: Moving towards increased affordability.
https://www.iea.org/reports/global-ev-outlook-2024
[3]          Or, T., Gourley, S. W., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon energy, 2(1), 6-43.
https://doi.org/10.1002/cey2.29
[4]          Guo, R., Wang, F., Rhamdhani, M. A., Xu, Y., & Shen, W. (2024). Managing the surge: A comprehensive review of the entire disposal framework for retired lithium-ion batteries from electric vehicles. Journal of Energy Chemistry, 92, 648-680.
https://doi.org/10.1016/j.jechem.2024.01.055
[5]          Chen, X., Ma, H., Luo, C., & Zhou, T. (2017). Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Journal of hazardous materials, 326, 77-86.
https://doi.org/10.1016/j.jhazmat.2016.12.021
[6]          Shangliao, S. (2024). Share of lithium-ion battery waste in India in 2021, by source. Statista.
https://www.statista.com/statistics/1411250/india-li-ion-battery-waste-by-source/
[7]          Lu, J., Li, W., Stevens, G. W., & Mumford, K. A. (2024). Multicomponent solvent extraction modelling of lithium, cobalt, nickel, and manganese from simulated black mass leachate. Separation and Purification Technology, 335, 126181.
https://doi.org/10.1016/j.seppur.2023.126181
[8]          Tan, D. H., Xu, P., & Chen, Z. (2020). Enabling sustainable critical materials for battery storage through efficient recycling and improved design: A perspective. MRS Energy & Sustainability, 7, E27.
https://doi.org/10.1557/mre.2020.31
[9]          Apte, S., Mahariq, I., Mishra, P., & Dhok, V. (2024). Scenario based Risk Assessment Study on End-of-Life Electric Vehicle Battery Waste Disposal: An Environmental Perspective. Frontiers in Environmental Science, 12, 1409606.
https://doi.org/10.21203/rs.3.rs-3839087/v1
[10]        Gerold, E., Luidold, S., & Antrekowitsch, H. (2021). Separation and efficient recovery of lithium from spent lithium-ion batteries. Metals, 11(7), 1091.
https://doi.org/10.3390/met11071091
[11]        Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3(11), 2622-2646.
https://doi.org/10.1016/j.joule.2019.09.014
[12]        Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208.
https://doi.org/10.1016/j.hydromet.2014.10.012
[13]        Hamza, M. F., Mira, H., Wei, Y., Aboelenin, S. M., Guibal, E., & Salem, W. M. (2022). Sulfonation of chitosan for enhanced sorption of Li (I) from acidic solutions–Application to metal recovery from waste Li-ion mobile battery. Chemical Engineering Journal, 441, 135941.
https://doi.org/10.1016/j.cej.2022.135941
[14]        Heelan, J., Gratz, E., Zheng, Z., Wang, Q., Chen, M., Apelian, D., & Wang, Y. (2016). Current and prospective Li-ion battery recycling and recovery processes. The Journal of The Minerals, Metals & Materials Society, 68, 2632-2638.
https://doi.org/10.1007/s11837-016-1994-y
[15]        Larouche, F., Tedjar, F., Amouzegar, K., Houlachi, G., Bouchard, P., Demopoulos, G. P., & Zaghib, K. (2020). Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials, 13(3), 801.
https://doi.org/10.3390/ma13030801
[16]        Pinegar, H., & Smith, Y. R. (2019). Recycling of end-of-life lithium ion batteries, Part I: Commercial processes. Journal of Sustainable Metallurgy, 5, 402-416.
http://dx.doi.org/10.1007/s40831-019-00235-9
[17]        Bibienne, T., Magnan, J. F., Rupp, A., & Laroche, N. (2020). From mine to mind and mobiles: Society’s increasing dependence on lithium. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(4), 265-270.
https://doi.org/10.2138/gselements.16.4.265
[18]        Nguyen-Tien, V., Dai, Q., Harper, G. D., Anderson, P. A., & Elliott, R. J. (2022). Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy. Applied Energy, 321, 119230.
https://doi.org/10.1016/j.apenergy.2022.119230
[19]        Preeti, M., & Sayali, A. (2021). Scientometric analysis of research on end-of-life electronic waste and electric vehicle battery waste. Journal of Scientometric Research, 10(1), 37-46.
https://doi.org/10.5530/jscires.10.1.5
[20]        Dong, C., Liu, C., Qin, Z., Deng, J., & Zhu, Y. (2024). A comprehensive overview of decommissioned lithium-ion battery recycling: Towards green and economical. Separation and Purification Technology, 354(3), 128929.
https://doi.org/10.1016/j.seppur.2024.128929
[21]        Liao, H., Zhang, S., Liu, B., He, X., Deng, J., & Ding, Y. (2024). Valuable metals recovery from spent ternary lithium-ion battery: A review. International Journal of Minerals, Metallurgy and Materials, 31(12), 2556-2581.
https://doi.org/10.1007/s12613- 024-2895-7
[22]        Milian, Y. E., Jamett, N., Cruz, C., Herrera-León, S., & Chacana-Olivares, J. (2024). A comprehensive review of emerging technologies for recycling spent lithium-ion batteries. Science of The Total Environment, 910, 168543.
https://doi.org/10.1016/j.scitotenv.2023.168543
[23]        Dhanabalan, K., Aruchamy, K., Sriram, G., Sadhasivam, T., & Oh, T. H. (2024). Recent recycling methods for spent cathode materials from lithium-ion batteries: A review. Journal of Industrial and Engineering Chemistry, 139, 111-124.
https://doi.org/10.1016/j.jiec.2024.06.010
[24]        Li, P., Luo, S., Lin, Y., Xiao, J., Xia, X., Liu, X., Wang, L., & He, X. (2024). Fundamentals of the recycling of spent lithium-ion batteries. Chemical Society Reviews, 53, 11967-12013.
https://doi.org/10.1039/D4CS00362D
[25]        Liu, Z., Liu, G., Cheng, L., Gu, J., Yuan, H., Chen, Y., & Wu, Y. (2024). Development of sustainable and efficient recycling technology for spent Li-ion batteries: Traditional and transformation go hand in hand. Green Energy & Environment, 9(5), 802-830.
https://doi.org/10.1016/j.gee.2023.09.001
[26]        Yu, Y., Chen, B., Huang, K., Wang, X., & Wang, D. (2014). Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries. International journal of environmental research and public health, 11(3), 3185-3198.
https://doi.org/10.3390/ijerph110303185
[27]        Al-Asheh, S., Aidan, A., Allawi, T., Hammoud, F., Al Ali, H., & Al Khamiri, M. (2024). Treatment and recycling of spent lithium-based batteries: a review. Journal of Material Cycles and Waste Management, 26(1), 76-95.
https://doi.org/10.1007/s10163-023-01842-1
[28]        Bhutada, G. (2023). The six major types of Lithium-ion Batteries: A Visual comparison. Elements by Visual Capitalist.
https://elements.visualcapitalist.com/the-six-major-types-of-lithium-ion-batteries/
[29]        Di Grandi, T. (2023). 4 Benefits of LFP Batteries for EVs. Visual Capitalist Batteries.
https://www.visualcapitalist.com/sp/4-benefits-of-lfp-batteries/
[30]        Statista Research Department (2023). Share of raw materials in lithium-ion batteries, by battery type. Statista.
https://www.statista.com/statistics/1203083/composition-of-lithium-ion-batteries/
[31]        Quintero-Almanza, D., Gamiño-Arroyo, Z., Sánchez-Cadena, L. E., Gómez-Castro, F. I., Uribe-Ramírez, A. R., Aguilera-Alvarado, A. F., & Ocampo Carmona, L. M. (2019). Recovery of cobalt from spent lithium-ion mobile phone batteries using liquid–liquid extraction. Batteries, 5(2), 44.
https://doi.org/10.3390/batteries5020044
[32]        Zhu, P., Gastol, D., Marshall, J., Sommerville, R., Goodship, V., & Kendrick, E. (2021). A review of current collectors for lithium-ion batteries. Journal of Power Sources, 485, 229321.
https://doi.org/10.1016/j.jpowsour.2020.229321
[33]        Kennedy, A. (2023). Visualized: Inside a Lithium-Ion Battery. Elements by Visual Capitalist.
https://elements.visualcapitalist.com/visualized-inside-a-lithium-ion-battery/
[34]        Wang, Y., An, N., Wen, L., Wang, L., Jiang, X., Hou, F., Yin, Y., & Liang, J. (2021). Recent progress on the recycling technology of Li-ion batteries. Journal of Energy Chemistry, 55, 391-419.
https://doi.org/10.1016/j.jechem.2020.05.008
[35]        Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622.
https://doi.org/10.1016/j.jpowsour.2021.229622
[36]        Buchmann, I. (2017). BU-808b: What Causes Li-ion to Die? Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers, 4th ed.
https://batteryuniversity.com/article/bu-808b-what-causes-li-ion-to-die#google_vignette
[37]        Zheng, X., Zhu, Z., Lin, X., Zhang, Y., He, Y., Cao, H., & Sun, Z. (2018). A mini-review on metal recycling from spent lithium-ion batteries. Engineering, 4(3), 361-370.
https://doi.org/10.1016/j.eng.2018.05.018
[38]        Chen, X., Kang, D., Cao, L., Li, J., Zhou, T., & Ma, H. (2019). Separation and recovery of valuable metals from spent lithium-ion batteries: Simultaneous recovery of Li and Co in a single step. Separation and Purification Technology, 210, 690-697.
https://doi.org/10.1016/j.seppur.2018.08.072
[39]        Zhou, S., Zhang, Y., Meng, Q., Dong, P., Fei, Z., & Li, Q. (2021). Recycling of LiCoO2 cathode material from spent lithium-ion batteries by ultrasonic enhanced leaching and one-step regeneration. Journal of Environmental Management, 277, 111426.
https://doi.org/10.1016/j.jenvman.2020.111426
[40]        Peters, J., Mohr, M., Baumann, M., & Weil, M. (2020). Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. Journal of Industrial Ecology, 24(6), 1310-1322.
https://doi.org/10.1111/jiec.13021
[41]        Nadimi, H., & Jalalian Karazmoudeh, N. (2020). Leaching of Co, Mn and Ni Using H2O2 in Sulfuric Acid Medium from Mobile Phone LIBs. Journal of The Institution of Engineers (India): Series D, 101, 111-116.
https://doi.org/10.1007/s40033-020-00221-6
[42]        Velázquez-Martínez, O., Valio, J., Santasalo-Aarnio, A., Reuter, M., & Serna-Guerrero, R. (2019). A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries, 5(4), 68.
https://doi.org/10.3390/batteries5040068
[43]        Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., & Rutz, M. (2012). Development of a recycling process for Li-ion batteries. Journal of power sources, 207, 173-182.
https://doi.org/10.1016/j.jpowsour.2012.01.152
[44]        Xu, J., Thomas, H. R., Francis, R. W., Lum, K. R., Wang, J., & Liang, B. (2008). A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2), 512-527.
https://doi.org/10.1016/j.jpowsour.2007.11.074
[45]        Nishi, Y. (2001). Lithium ion secondary batteries; past 10 years and the future. Journal of power sources, 100(1-2), 101-106.
https://doi.org/10.1016/S0378-7753(01)00887-4
[46]        Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials today, 18(5), 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[47]        Rouquette, L. M., Petranikova, M., & Vieceli, N. (2023). Complete and selective recovery of lithium from EV lithium-ion batteries: Modeling and optimization using oxalic acid as a leaching agent. Separation and Purification Technology, 320, 124143.
https://doi.org/10.1016/j.seppur.2023.124143
[48]        Li, M., Yang, J., Liang, S., Wang, J., Zhang, P., Yu, W., Hu, J., Xiao, K., Hou, H., Liu, B., & Kumar, R. V. (2020). A closed-loop ammonium salt system for recovery of high-purity lead tetroxide product from spent lead-acid battery paste. Journal of Cleaner Production, 250, 119488.
https://doi.org/10.1016/j.jclepro.2019.119488
[49]        Lincoln, J. D., Ogunseitan, O. A., Shapiro, A. A., & Saphores, J. D. M. (2007). Leaching assessments of hazardous materials in cellular telephones. Environmental Science & Technology, 41(7), 2572-2578.
https://doi.org/10.1021/es0610479
[50]        Dutta, D., Ghosal, S., Goel, S., & Sengupta, D. (2021). Emission of ionizing radiation from active and end-of-life mobile phones and batteries. Journal of Hazardous, Toxic, and Radioactive Waste, 25(4), 05021006.
https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000630
[51]        Mennik, F., Dinç, N. İ., & Burat, F. (2023). Selective recovery of metals from spent mobile phone lithium-ion batteries through froth flotation followed by magnetic separation procedure. Results in Engineering, 17, 100868.
https://doi.org/10.1016/j.rineng.2022.100868
[52]        Kallitsis, E., Korre, A., & Kelsall, G. H. (2022). Life cycle assessment of recycling options for automotive Li-ion battery packs. Journal of Cleaner Production, 371, 133636.
https://doi.org/10.1016/j.jclepro.2022.133636
[53]        Yu, M., Bai, B., Xiong, S., & Liao, X. (2021). Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries. Journal of Cleaner Production, 321, 128935.
https://doi.org/10.1016/j.jclepro.2021.128935
[54]        Mishra, P., & Apte, S. D. (2025). Experimental Investigation of the Impact of End-of-Life Lithium-Ion Battery Chemistry on Index and Engineering Properties of Clayey Soil Stratum. Journal of Hazardous, Toxic, and Radioactive Waste, 29(3), 04025015.
https://doi.org/10.1061/JHTRBP.HZENG-1447
[55]        Smical, I., Muntean, A., Micle, V., & Sur, I. M. (2023). The influence of Spent Portable Battery Waste on the aquatic environment. Applied Sciences, 13(21), 11658.
https://doi.org/10.3390/app132111658
[56]        Xiaodong, S., & Ishchenko, V. (2024). Environmental impact analysis of waste lithium-ion battery cathode recycling. Journal of Ecological Engineering, 25(7), 352-358.
https://doi.org/10.12911/22998993/189187
[57]        Dhar, P. K., Naznin, A., & Ara, M. H. (2020). Health risks assessment of heavy metal contamination in drinking water collected from different educational institutions of Khulna city corporation, Bangladesh. Advances in Environmental Technology, 6(4), 235-250.
https://doi.org/10.22104/aet.2021.4932.1331
[58]        Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099-6121.
https://doi.org/10.1039/D1EE00691F
[59]        Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205.
https://doi.org/10.1016/j.rser.2015.12.363
[60]        Øygard, J. K., Måge, A., Gjengedal, E., & Svane, T. (2005). Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate. Waste management, 25(7), 712-718.
https://doi.org/10.1016/j.wasman.2004.11.008
[61]        Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of power sources, 399, 274-286.
https://doi.org/10.1016/j.jpowsour.2018.07.116
[62]        Bolan, N., Hoang, S. A., Tanveer, M., Wang, L., Bolan, S., Sooriyakumar, P., Robinson, B., Wijesekara, H., Keerthanan, S., Vithanage, M., Markert, B., Fränzle, S., Wünschmann, S., Sarkar, B., Vinu, A., Kirkham, M. B., Siddique, K. H. M., & Rinklebe, J. (2021). From mine to mind and mobiles–Lithium contamination and its risk management. Environmental Pollution, 290, 118067.
https://doi.org/10.1016/j.envpol.2021.118067
[63]        Naranjo, M. A., Romero, C., Bellés, J. M., Montesinos, C., Vicente, O., & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 217, 417-424.
https://doi.org/10.1007/s00425-003-1017-4
[64]        Qiao, L., Tanveer, M., Wang, L., & Tian, C. (2018). Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. Plant Physiology and Biochemistry, 132, 341-344.
https://doi.org/10.1016/j.plaphy.2018.09.022
[65]        Shen, J., Li, X., Shi, X., Wang, W., Zhou, H., Wu, J., Wang, X., & Li, J. (2020). The toxicity of lithium to human cardiomyocytes. Environmental Sciences Europe, 32, 1-12.
https://doi.org/10.1186/s12302-020-00333-6
[66]        Liu, W., Zhong, X., Han, J., Qin, W., Liu, T., Zhao, C., & Chang, Z. (2018). Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering, 7(1), 1289-1299.
https://doi.org/10.1021/acssuschemeng.8b04939
[67]        Chalvatzaki, E., Aleksandropoulou, V., & Lazaridis, M. (2014). A case study of landfill workers exposure and dose to particulate matter-bound metals. Water, Air, & Soil Pollution, 225, 1-19.
https://doi.org/10.1007/s11270-013-1782-z
[68]        Peter, A. E., Nagendra, S. S., & Nambi, I. M. (2018). Comprehensive analysis of inhalable toxic particulate emissions from an old municipal solid waste dumpsite and neighborhood health risks. Atmospheric pollution research, 9(6), 1021-1031.
https://doi.org/10.1016/j.apr.2018.03.006
[69]        Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N., & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece). Waste management, 30(11), 2058-2064.
https://doi.org/10.1016/j.wasman.2010.05.025
[70]        Mossali, E., Picone, N., Gentilini, L., Rodrìguez, O., Pérez, J. M., & Colledani, M. (2020). Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of environmental management, 264, 110500.
https://doi.org/10.1016/j.jenvman.2020.110500
[71]        Wang, M. M., Zhang, C. C., & Zhang, F. S. (2017). Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Waste Management, 67, 232-239.
https://doi.org/10.1016/j.wasman.2017.05.013
[72]        Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., & Sun, Z. (2018). A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6(2), 1504-1521.
https://doi.org/10.1021/acssuschemeng.7b03811
[73]        Chen, Y., Liu, N., Hu, F., Ye, L., Xi, Y., & Yang, S. (2018). Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Management, 75, 469-476.
https://doi.org/10.1016/j.wasman.2018.02.024
[74]        Paulino, J. F., Busnardo, N. G., & Afonso, J. C. (2008). Recovery of valuable elements from spent Li-batteries. Journal of hazardous materials, 150(3), 843-849.
https://doi.org/10.1016/j.jhazmat.2007.10.048
[75]        Hanisch, C., Loellhoeffel, T., Diekmann, J., Markley, K. J., Haselrieder, W., & Kwade, A. (2015). Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes. Journal of cleaner production, 108, 301-311.
https://doi.org/10.1016/j.jclepro.2015.08.026
[76]        Contestabile, M., Panero, S., & Scrosati, B. (2001). A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 92(1-2), 65-69.
https://doi.org/10.1016/S0378-7753(00)00523-1
[77]        Pant, D., & Dolker, T. (2017). Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Waste Management, 60, 689-695.
https://doi.org/10.1016/j.wasman.2016.09.039
[78]        Wang, M. M., Zhang, C. C., & Zhang, F. S. (2016). An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste management, 51, 239-244.
https://doi.org/10.1016/j.wasman.2016.03.006
[79]        Gaines, L. (2018). Lithium-ion battery recycling processes: Research towards a sustainable course. Sustainable materials and technologies, 17, e00068.
https://doi.org/10.1016/j.susmat.2018.e0006
[80]        Assefi, M., Maroufi, S., Yamauchi, Y., & Sahajwalla, V. (2020). Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Current Opinion in Green and Sustainable Chemistry, 24, 26-31.
https://doi.org/10.1016/j.cogsc.2020.01.005
[81]        Badawy, S. M., & Nayl, A. E. A. (2019). Recovery of laminar LiCoO2 materials from spent mobile phone batteries by high-temperature calcination. Journal of Sustainable Metallurgy, 5(4), 474-481.
https://doi.org/10.1007/s40831-019-00238-6
[82]        Träger, T., Friedrich, B., & Weyhe, R. (2015). Recovery concept of value metals from automotive lithium‐ion batteries. Chemie Ingenieur Technik, 87(11), 1550-1557.
https://doi.org/10.1002/cite.201500066
[83]        Yao, Y., Zhu, M., Zhao, Z., Tong, B., Fan, Y., & Hua, Z. (2018). Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chemistry & Engineering, 6(11), 13611-13627.
https://doi.org/10.1021/acssuschemeng.8b03545
[84]        Mao, J., Li, J., & Xu, Z. (2018). Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries. Journal of Cleaner Production, 205, 923-929.
https://doi.org/10.1016/j.jclepro.2018.09.098
[85]        Rajaeifar, M. A., Raugei, M., Steubing, B., Hartwell, A., Anderson, P. A., & Heidrich, O. (2021). Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies. Journal of Industrial Ecology, 25(6), 1560-1571.
https://doi.org/10.1111/jiec.13157
[86]        Kwon, O. S., & Sohn, I. L. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process. Resources, Conservation and Recycling, 158, 104809.
https://doi.org/10.1016/j.resconrec.2020.104809
[87]        Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., & Rutz, M. (2012). Development of a recycling process for Li-ion batteries. Journal of power sources, 207, 173-182.
https://doi.org/10.1016/j.jpowsour.2012.01.152
[88]        Windisch-Kern, S., Holzer, A., Ponak, C., & Raupenstrauch, H. (2021). Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the InduRed reactor concept. Processes, 9(1), 84.
https://doi.org/10.3390/pr9010084
[89]        Lee, S., Cho, S. H., Jung, S., Kwon, K., Tsang, Y. F., & Kwon, E. E. (2024). Sustainable method for disposing of ceramic-coated battery separator via carbon dioxide-assisted thermochemical process. Journal of Analytical and Applied Pyrolysis, 179, 106466.
https://doi.org/10.1016/j.jaap.2024.106466
[90]        Xiao, Y., Su, J., & Chen, L. (2024). Resonant Acoustic Vibration-Assisted Cathode Stripping for Efficient Recycling of Spent Li-Ion Batteries. Journal of Manufacturing Science and Engineering, 146(4).
https://doi.org/10.1115/1.4064629
[91]        Woeste, R., Drude, E. S., Vrucak, D., Klöckner, K., Rombach, E., Letmathe, P., & Friedrich, B. (2024). A techno-economic assessment of two recycling processes for black mass from end-of-life lithium-ion batteries. Applied Energy, 361, 122921.
https://doi.org/10.1016/j.apenergy.2024.122921
[92]        Nuraeni, B. A., Nababan, D. C., Putera, A. D. P., & Rhamdhani, M. A. (2024, February). Concentrated-Solar-Thermal-Driven Recycling of Li-Ion Battery Waste Through Carbothermic Reduction: Thermodynamic Assessment and Experimental Verification. In TMS Annual Meeting & Exhibition (pp. 187-199). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-50236-1_20
[93]        Nuraeni, B. A., Avarmaa, K. L., Prentice, L. H., Rankin, W. J., & Rhamdhani, M. A. (2024). Hydrogen Reduction of LiCoO2 Cathode Material: A Kinetic Study. Metallurgical and Materials Transactions B, 55(1), 319-336.
https://doi.org/10.1007/s11663-023-02960-9
[94]        Atia, T. A., Elia, G., Hahn, R., Altimari, P., & Pagnanelli, F. (2019). Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries. Journal of Energy Chemistry, 35, 220-227.
https://doi.org/10.1016/j.jechem.2019.03.022
[95]        Song, L., Qi, C., Wang, S., Zhu, X., Zhang, T., Jin, Y., & Zhang, M. (2023). Direct regeneration of waste LiFePO4 cathode materials with a solid-phase method promoted by activated CNTs. Waste Management, 157, 141-148.
https://doi.org/10.1016/j.wasman.2022.12.002
[96]        Yang, T., Lu, Y., Li, L., Ge, D., Yang, H., Leng, W., Zhou, H., Han, X., Schmidt, N., Ellis, M., & Li, Z. (2020). An effective relithiation process for recycling lithium‐ion battery cathode materials. Advanced Sustainable Systems, 4(1), 1900088.
https://doi.org/10.1002/adsu.201900088
[97]        Ma, C., Gamarra, J. D., Younesi, R., Forsberg, K., & Svärd, M. (2023). Antisolvent crystallization from deep eutectic solvent leachates of LiNi1/3Mn1/3Co1/3O2 for recycling and direct synthesis of battery cathodes. Resources, Conservation and Recycling, 198, 107210.
https://doi.org/10.1016/j.resconrec.2023.107210
[98]        Fan, M., Chang, X., Guo, Y. J., Chen, W. P., Yin, Y. X., Yang, X., Meng, Q., Wan, L. J., & Guo, Y. G. (2021). Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy & Environmental Science, 14(3), 1461-1468.
https://doi.org/10.1039/D0EE03914D
[99]        Virolainen, S., Wesselborg, T., Kaukinen, A., & Sainio, T. (2021). Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange. Hydrometallurgy, 202, 105602.
https://doi.org/10.1016/j.hydromet.2021.105602
[100]      Wesselborg, T., Virolainen, S., & Sainio, T. (2021). Recovery of lithium from leach solutions of battery waste using direct solvent extraction with TBP and FeCl3. Hydrometallurgy, 202, 105593.
https://doi.org/10.1016/j.hydromet.2021.105593
[101]      Gao, H., Yan, Q., Xu, P., Liu, H., Li, M., Liu, P., Luo, J., & Chen, Z. (2020). Efficient direct recycling of degraded LiMn2O4 cathodes by one-step hydrothermal relithiation. ACS applied materials & interfaces, 12(46), 51546-51554.
https://doi.org/10.1021/acsami.0c15704
[102]      Wang, Q., Aldana, L. A. D., Dufek, E. J., Ginosar, D. M., Klaehn, J. R., & Shi, M. (2023). Electrification and decarbonization of spent Li-ion batteries purification by using an electrochemical membrane reactor. Separation and Purification Technology, 307, 122828.
https://doi.org/10.1016/j.seppur.2022.122828
[103]      Jang, Y., Hou, C. H., Park, S., Kwon, K., & Chung, E. (2021). Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes. Resources, Conservation and Recycling, 175, 105837.
https://doi.org/10.1016/j.resconrec.2021.105837
[104]      Yadav, P., Jie, C. J., Tan, S., & Srinivasan, M. (2020). Recycling of cathode from spent lithium iron phosphate batteries. Journal of Hazardous Materials, 399, 123068.
https://doi.org/10.1016/j.jhazmat.2020.123068
[105]      Porvali, A., Aaltonen, M., Ojanen, S., Velazquez-Martinez, O., Eronen, E., Liu, F., Wilson, B. P., Serna-Guerrero, R., & Lundström, M. (2019). Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste. Resources, Conservation and Recycling, 142, 257-266.
https://doi.org/10.1016/j.resconrec.2018.11.023
[106]      Schiavi, P. G., Marrani, A. G., Russina, O., D'Annibale, L., Amato, F., Pagnanelli, F., & Altimari, P. (2024). Aqueous electrochemical delithiation of cathode materials as a strategy to selectively recover lithium from waste lithium-ion batteries. Journal of Energy Chemistry, 88, 144-153.
https://doi.org/10.1016/j.jechem.2023.09.040
[107]      Xu, P., Dai, Q., Gao, H., Liu, H., Zhang, M., Li, M., Chen, Y., An, K., Meng, Y. S., Liu, P., Li, Y., Spangenberger, J. S., Gaines, L., Lu, J., & Chen, Z. (2020). Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule, 4(12), 2609-2626.
https://doi.org/10.1016/j.joule.2020.10.008
[108]      Horeh, N. B., Mousavi, S. M., & Shojaosadati, S. A. (2016). Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. Journal of power sources, 320, 257-266.
https://doi.org/10.1016/j.jpowsour.2016.04.104
[109]      Gerold, E., Schinnerl, C., & Antrekowitsch, H. (2022). Critical evaluation of the potential of organic acids for the environmentally friendly recycling of spent lithium-ion batteries. Recycling, 7(1), 4.
https://doi.org/10.3390/recycling7010004
[110]      Kepper, M., Rother, A., Thöming, J., & Pesch, G. R. (2024). Polarisability-dependent separation of lithium iron phosphate (LFP) and graphite in dielectrophoretic filtration. Results in Engineering, 21, 101854.
https://doi.org/10.1016/j.rineng.2024.101854
[111]      Nakajima, A., Zheng, Q., Ogawa, T., Hirama, S., & Watanabe, M. (2022). Metal recovery of LiCoO2/LiNiO2 cathode materials by hydrothermal leaching and precipitation separation. ACS Sustainable Chemistry & Engineering, 10(38), 12852-12863.
https://doi.org/10.1021/acssuschemeng.2c04259
[112]      Forte, F., Pietrantonio, M., Pucciarmati, S., Puzone, M., & Fontana, D. (2021). Lithium iron phosphate batteries recycling: An assessment of current status. Critical Reviews in Environmental Science and Technology, 51(19), 2232-2259.
https://doi.org/10.1080/10643389.2020.1776053
[113]      Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., Leal, J. P., Gasche, T. A., Kucuker, M. A., Kuchta, K., Neto, I. F. F., Soares, H. M. V. M., & Chmielarz, A. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end-of-life electronic wastes-a review. Critical reviews in environmental science and technology, 49(3), 212-275.
https://doi.org/10.1080/10643389.2018.1540760
[114]      Sun, L., & Qiu, K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of hazardous materials, 194, 378-384.
https://doi.org/10.1016/j.jhazmat.2011.07.114
[115]      Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium-ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 136, 418-435.
https://doi.org/10.1016/j.resconrec.2018.04.024
[116]      Barik, S. P., Prabaharan, G., & Kumar, L. (2017). Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production, 147, 37-43.
https://doi.org/10.1016/j.jclepro.2017.01.095
[117]      Sun, L., & Qiu, K. (2012). Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste management, 32(8), 1575-1582.
https://doi.org/10.1016/j.wasman.2012.03.027
[118]      Zheng, X., Gao, W., Zhang, X., He, M., Lin, X., Cao, H., Zhang, Y., & Sun, Z. (2017). Spent lithium-ion battery recycling–Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste management, 60, 680-688.
https://doi.org/10.1016/j.wasman.2016.12.007
[119]      Ku, H., Jung, Y., Jo, M., Park, S., Kim, S., Yang, D., Rhee, K., An, E. M., Sohn, J., & Kwon, K. (2016). Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. Journal of hazardous materials, 313, 138-146.
https://doi.org/10.1016/j.jhazmat.2016.03.062
[120]      Chen, L., Tang, X., Zhang, Y., Li, L., Zeng, Z., & Zhang, Y. (2011). Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy, 108(1-2), 80-86.
https://doi.org/10.1016/j.hydromet.2011.02.010
[121]      Diaz, L. A., Strauss, M. L., Adhikari, B., Klaehn, J. R., McNally, J. S., & Lister, T. E. (2020). Electrochemical-assisted leaching of active materials from lithium ion batteries. Resources, Conservation and Recycling, 161, 104900.
https://doi.org/10.1016/j.resconrec.2020.104900
[122]      Azhari, L., Bong, S., Ma, X., & Wang, Y. (2020). Recycling for all solid-state lithium-ion batteries. Matter, 3(6), 1845-1861.
https://doi.org/10.1016/j.matt.2020.10.027
[123]      Anjum, F., Shahid, M., & Akcil, A. (2012). Biohydrometallurgy techniques of low grade ores: A review on black shale. Hydrometallurgy, 117, 1-12.
https://doi.org/10.1016/j.hydromet.2012.01.007
[124]      Dolker, T., & Pant, D. (2018). Bioremediation of metals from lithium-ion battery (LIB) waste. Waste Bioremediation, 265-278.
https://doi.org/10.1007/978-981-10-7413-4_14
[125]      Jaafar, R., Al-Sulami, A., Al-Taee, A., Aldoghachi, F., & Napes, S. (2015). Biosorption and bioaccumulation of some heavy metals by Deinococcus radiodurans isolated from soil in Basra Governorate-Iraq. J Biotechnol Biomater, 5(190), 2.
https://doi.org/10.4172/2155-952X.1000190
[126]      Alipanah, M., Reed, D., Thompson, V., Fujita, Y., & Jin, H. (2023). Sustainable bioleaching of lithium-ion batteries for critical materials recovery. Journal of Cleaner Production, 382, 135274.
https://doi.org/10.1016/j.jclepro.2022.135274
[127]      Swain, B., Jeong, J., Lee, J. C., Lee, G. H., & Sohn, J. S. (2007). Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. Journal of Power Sources, 167(2), 536-544.
https://doi.org/10.1016/j.jpowsour.2007.02.046
[128]      Chen, X., Chen, Y., Zhou, T., Liu, D., Hu, H., & Fan, S. (2015). Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste management, 38, 349-356.
https://doi.org/10.1016/j.wasman.2014.12.023
[129]      Guo, F., Nishihama, S., & Yoshizuka, K. (2013). Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins. Environmental technology, 34(10), 1307-1317.
https://doi.org/10.1080/09593330.2012.746734
[130]      Jiang, J., Mu, L., Qiang, Y., Yang, Y., Wang, Z., Yi, R., Qui, Y., Chen, L., Yan, L., & Fang, H. (2021). Unexpected selective absorption of lithium in thermally reduced graphene oxide membranes. Chinese Physics Letters, 38(11), 116802.
https://doi.org/10.1088/0256-307X/38/11/116802
[131]      Jung, J. C. Y., Sui, P. C., & Zhang, J. (2021). A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. Journal of Energy Storage, 35, 102217.
https://doi.org/10.1016/j.est.2020.102217
[132]      Song, S. L., Liu, R. Q., Sun, M. M., Zhen, A. G., Kong, F. Z., & Yang, Y. (2024). Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery. Rare Metals, 43(12), 1-13.
https://doi.org/10.1007/s12598-023-02493-9
[133]      Tawonezvi, T., Zide, D., Nomnqa, M., Petrik, L., & Bladergroen, B. J. (2024). Selective electrodeposition of Co-Ni alloys from synthetic quasi LiB NMC 532 cathode sulphate solutions using rotating plate potentiostatic electrowinning. Chemical Engineering Journal Advances, 17, 100579.
https://doi.org/10.1016/j.ceja.2023.100579
[134]      Yang, W., Liu, X., Zhou, X., Tang, J., Su, F., Li, Z., Yang, J., & Ma, Y. (2024). Mechanism of selective lithium extraction from spent LiFePO4 cathodes in oxidizing alkaline leaching system. Separation and Purification Technology, 329, 125237.
https://doi.org/10.1016/j.seppur.2023.125237
[135]      Su, F., Meng, Q., Liu, X., Yang, W., Chen, Y., Yang, J., Tang, J., Wang, H., Ma, Y., & Zhou, X. (2024). Recovery of valuable metals from spent lithium-ion batteries via zinc powder reduction roasting and cysteine leaching. Science of The Total Environment, 912, 169541.
https://doi.org/10.1016/j.scitotenv.2023.169541
[136]      de Castro, R. H., Romano Espinosa, D. C., Gobo, L. A., Kumoto, E. A., Botelho Junior, A. B., & Tenorio, J. A. S. (2024). Design of recycling processes for NCA-type Li-ion batteries from electric vehicles toward the circular economy. Energy & Fuels, 38(6), 5545-5557.
https://doi.org/10.1021/acs.energyfuels.3c04904
[137]      Masilela, V., Nguegang, B., & Ambushe, A. A. (2025). Investigating the removal of Mn (II) from water and wastewater using low-cost bio-sorbents: orange peels and sugarcane bagasse. Advances in Environmental Technology, 11(1), 13-35.
https://doi.org/10.22104/aet.2024.6631.1814
[138]      Dong, Y., Ji, H., Wu, X., Zheng, N., Wang, J., Ji, G., Chen, Y., Zhou, G., & Liang, Z. (2024). Trends of sustainable recycling technology for lithium‐ion batteries: Metal recovery from conventional metallurgical processes to innovative direct recycling. MetalMat, 1(1), e5.
https://doi.org/10.1002/metm.5
[139]      Wu, X., Liu, Y., Wang, J., Tan, Y., Liang, Z., & Zhou, G. (2024). Toward Circular Energy: Exploring Direct Regeneration for Lithium‐Ion Battery Sustainability. Advanced Materials, 36(32), 2403818.
https://doi.org/10.1002/adma.202403818
[140]      Ciez, R. E., & Whitacre, J. F. (2019). Examining different recycling processes for lithium-ion batteries. Nature Sustainability, 2(2), 148-156.
https://doi.org/10.1038/s41893-019-0222-5
[141]      Lei, S., Zhang, Y., Song, S., Xu, R., Sun, W., Xu, S., & Yang, Y. (2021). Strengthening valuable metal recovery from spent lithium-ion batteries by environmentally friendly reductive thermal treatment and electrochemical leaching. ACS Sustainable Chemistry & Engineering, 9(20), 7053-7062.
https://doi.org/10.1021/acssuschemeng.1c00937
[142]      Wu, X., Ma, J., Wang, J., Zhang, X., Zhou, G., & Liang, Z. (2022). Progress, key issues, and future prospects for li‐ion battery recycling. Global Challenges, 6(12), 2200067.
https://doi.org/10.1002/gch2.202200067
[143]      Li, L., Yang, T., & Li, Z. (2021). Parameter optimization and yield prediction of cathode coating separation process for direct recycling of end-of-life lithium-ion batteries. RSC advances, 11(39), 24132-24136.
https://doi.org/10.1039/D1RA04086C
[144]      Fan, X., Tan, C., Li, Y., Chen, Z., Li, Y., Huang, Y., Pan, Q., Zheng, F., Wang, H., & Li, Q. (2021). A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Journal of Hazardous Materials, 410, 124610.
https://doi.org/10.1016/j.jhazmat.2020.124610
[145]      Chi, Z., Li, J., Wang, L., Li, T., Wang, Y., Zhang, Y., Tao, S., Zhang, M., Xiao, Y., & Chen, Y. (2021). Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chemistry, 23(22), 9099-9108.
https://doi.org/10.1039/D1GC03526F
[146]      Xing, C., Da, H., Yang, P., Huang, J., Gan, M., Zhou, J., Li, Y., Zhang, H., Ge, B., & Fei, L. (2023). Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance. ACS nano, 17(3), 3194-3203.
https://doi.org/10.1021/acsnano.3c00270
[147]      Xu, Y., Qiu, X., Zhang, B., Di, A., Deng, W., Zou, G., Hou, H., & Ji, X. (2022). Start from the source: direct treatment of a degraded LiFePO4 cathode for efficient recycling of spent lithium-ion batteries. Green Chemistry, 24(19), 7448-7457.
https://doi.org/10.1039/D2GC02652J
[148]      Li, X., Wu, B., Sun, H., Zhu, K., Gao, Y., Bao, T., Wu, H., & Cao, D. (2024). Direct regeneration of spent graphite anode material via a simple thermal treatment method. Sustainable Energy & Fuels, 8(7), 1438-1447.
https://doi.org/10.1039/D3SE01552A
[149]      Chen, W., Cheng, Y., Chen, J., Bets, K. V., Salvatierra, R. V., Ge, C., Li, J. T., Luong, D. X., Kittrell, C., Wang, Z., McHugh, E. A., Gao, G., Deng, B., Han, Y., Yakobson, B. I., & Tour, J. M. (2024). Nondestructive flash cathode recycling. Nature Communications, 15(1), 6250.
https://doi.org/10.1038/s41467-024-50324-x
[150]      Renier, O., Pellini, A., & Spooren, J. (2023). Advances in the Separation of Graphite from Lithium Iron Phosphate from End-of-Life Batteries Shredded Fine Fraction Using Simple Froth Flotation. Batteries, 9(12), 589.
https://doi.org/10.3390/batteries9120589
[151]      Xiao, Y., Li, J., Huang, W., Wang, L., & Luo, J. (2022). Green & efficient regeneration of graphite anode from spent lithium-ion batteries enabled by asphalt coating. Journal of Materials Science: Materials in Electronics, 33(21), 16740-16752.
https://doi.org/10.1007/s10854-022-08533-x
[152]      Kim, K. S., Jeon, M. K., Song, S. H., Hong, S., Kim, H. S., Kim, S. W., Kim, J., Oh, P., Hwang, J., Song, J., Ma, J., Woo, J. J., Yu, S. H., & Kim, H. (2023). Upcycling spent cathodes into single-crystalline Ni-rich cathode materials through selective lithium extraction. Journal of Materials Chemistry A, 11(39), 21222-21230.
https://doi.org/10.1039/D3TA03900E
[153]      Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in sustainable recycling technology of spent lithium‐ion batteries. Energy & Environmental Materials, 5(4), 1012-1036.
https://doi.org/10.1002/eem2.12271
[154]      Cerrillo-Gonzalez, M. D. M., Villen-Guzman, M., Vereda-Alonso, C., Rodriguez-Maroto, J. M., & Paz-Garcia, J. M. (2024). Towards sustainable lithium-ion battery recycling: Advancements in circular hydrometallurgy. Processes, 12(7), 1485.
https://doi.org/10.3390/pr12071485
[155]      Galstyan, V., D'Angelo, P., Tarabella, G., Vurro, D., & Djenizian, T. (2024). High versatility of polyethylene terephthalate (PET) waste for the development of batteries, biosensing and gas sensing devices. Chemosphere, 359, 142314.
https://doi.org/10.1016/j.chemosphere.2024.142314
[156]      Short, M., Rehman, S., Cui, X., Al-Greer, M., Savage, R., Emandi, B., & Burn, A. (2024). Technologies for EoL EV Batteries Recycling: Assessment and Proposals. 29th International Conference on Automation and Computing (ICAC) 1-6. IEEE.
https://doi.org/10.1109/ICAC61394.2024.10718759
[157]      Song, D., Yu, J., Wang, M., Tan, Q., Liu, K., & Li, J. (2023). Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Materials, 61, 102870.
https://doi.org/10.1016/j.ensm.2023.102870
[158]      Picatoste, A., Justel, D., & Mendoza, J. M. F. (2022). Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines. Renewable and Sustainable Energy Reviews, 169, 112941.
https://doi.org/10.1016/j.rser.2022.112941