[1] Uzair, B., Shaukat, A., Fasim, F., & Maqbool, S. (2019). Conjugate magnetic nanoparticles and microbial remediation: A genuine technology to remediate radioactive waste. In Proceedings of the International Conference on Advances in Material Science and Engineering (pp. 197–211).
https://doi.org/10.1002/9781119592129.ch11
[2] Mandeep, Kumar Gupta, G., & Shukla, P. (2020). Insights into the resources generation from pulp and paper industry wastes: Challenges, perspectives and innovations. Bioresource Technology, 297, 122496.
https://doi.org/10.1016/j.biortech.2019.122496
[3] Del Prado-Audelo, M. L., García Kerdan, I., Escutia-Guadarrama, L., Reyna-González, J. M., Magaña, J. J., & Leyva-Gómez, G. (2021). Nanoremediation: Nanomaterials and nanotechnologies for environmental cleanup. Frontiers in Environmental Science, 9.
https://doi.org/10.3389/fenvs.2021.793765
[4] Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O. A., Sharma, V., et al. (2021). Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere, 271, 129458.
https://doi.org/10.1016/j.chemosphere.2020.129458
[5] Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: Materials and applications. Molecules, 23(7), 1760.
https://doi.org/10.3390/molecules23071760
[6] Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., & Schnaid, F. (2017). Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration & Biodegradation, 119, 419–428.
https://doi.org/10.1016/j.ibiod.2016.09.027
[7] Kapoor, R. T., Salvadori, M. R., Rafatullah, M., Siddiqui, M. R., Khan, M. A., & Alshareef, S. A. (2021). Exploration of microbial factories for synthesis of nanoparticles: A sustainable approach for bioremediation of environmental contaminants. Frontiers in Microbiology, 12.
https://doi.org/10.3389/fmicb.2021.658294
[8] Koul, B., Poonia, A. K., Yadav, D., & Jin, J. O. (2021). Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules, 11(6), 886.
https://doi.org/10.3390/biom11060886
[9] Mandeep, & Shukla, P. (2020). Microbial nanotechnology for bioremediation of industrial wastewater. Frontiers in Microbiology, 11.
https://doi.org/10.3389/fmicb.2020.590631
[10] Parani, M., Lokhande, G., Singh, A., & Gaharwar, A. K. (2016). Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Applied Materials & Interfaces, 8(16), 10049–10069.
https://doi.org/10.1021/acsami.6b00291
[11] Salata, O. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2(1), 3.
https://doi.org/10.1186/1477-3155-2-3
[12] Paudel, K. R., Wadhwa, R., Tew, X. N., Lau, N. J. X., Madheswaran, T., Panneerselvam, J., et al. (2021). Rutin-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Life Sciences, 276, 119436.
https://doi.org/10.1016/j.lfs.2021.119436
[13] Tefas, L. R., Toma, I., Sesarman, A., Banciu, M., Jurj, A., Berindan-Neagoe, I., et al. (2022). Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. Journal of Liposome Research, 0(0), 1–17.
https://doi.org/10.1080/08982104.2022.2153139
[14] Lazer, M. L., Sadhasivam, B., Palaniyandi, K., Muthuswamy, T., Ramachandran, I., Balakrishnan, A., et al. (2018). Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. International Journal of Biological Macromolecules, 107, 1988–1998.
https://doi.org/10.1016/j.ijbiomac.2017.10.064
[15] Lee, W., & Im, H. J. (2019). Theranostics based on liposome: Looking back and forward. Nuclear Medicine and Molecular Imaging, 53(4), 242–246.
https://doi.org/10.1007/s13139-019-00603-z
[16] Babu, A., Muralidharan, R., Amreddy, N., Mehta, M., Munshi, A., & Ramesh, R. (2016). Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Transactions on Nanobioscience, 15(8), 849–863.
https://doi.org/10.1109/TNB.2016.2621730
[17] Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2.
https://doi.org/10.3389/fnano.2020.579954
[18] Kumari, D. R., & Kotecha, D. M. (2016). A review on the standardization of herbal medicines. International Journal of Herbal Medicine, 7(2), Article 2.
https://www.researchgate.net/publication/298426911_A_review_on_the_Standardization_of_herbal_medicines
[19] Shakya, A., & Correspondence, A. (2016). Medicinal plants: Future source of new drugs.
https://www.researchgate.net/publication/305305647_Medicinal_plants_Future_source_of_new_drugs
[20] Babu, S. P. P., Venkatabalasubramanian, S., Munisankar, S. R., & Thiyagaraj, A. (2022). Cancer stem cell markers interplay with chemoresistance in triple negative breast cancer: A therapeutic perspective. Bulletin du Cancer, 109(9), 960–971.
https://doi.org/10.1016/j.bulcan.2022.05.007
[21] Salunkhe, V. R., Patil, P. S., Wadkar, G. H., & Bhinge, S. D. (2021). Herbal liposomes: Natural network for targeted drug delivery system. Journal of Pharmaceutical Research International, 31, 31–41.
https://doi.org/10.9734/jpri/2021/v33i29B31586
[22] Alshaer, W., Hillaireau, H., Vergnaud, J., Mura, S., Deloménie, C., Sauvage, F., et al. (2018). Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. Journal of Controlled Release, 271, 98–106.
https://doi.org/10.1016/j.jconrel.2017.12.022
[23] Aryasomayajula, B., Salzano, G., & Torchilin, V. P. (2017). Multifunctional liposomes. In R. Zeineldin (Ed.), Cancer nanotechnology: Methods and protocols (pp. 41–61). New York, NY: Springer.
https://doi.org/10.1007/978-1-4939-6646-2_3
[24] Ignee, A., Atkinson, N. S. S., Schuessler, G., & Dietrich, C. F. (2016). Ultrasound contrast agents. Endoscopic Ultrasound, 5(6), 355–362.
https://doi.org/10.4103/2303-9027.193594
[25] Musielak, M., Potoczny, J., Boś-Liedke, A., & Kozak, M. (2021). The combination of liposomes and metallic nanoparticles as multifunctional nanostructures in therapy and medical imaging: A review. International Journal of Molecular Sciences, 22(12), 6229.
https://doi.org/10.3390/ijms22126229
[26] Pestovsky, Y., & Martinez-Antonio, A. (2017). The use of nanoparticles and nanoformulations in agriculture. Journal of Nanoscience and Nanotechnology, 17(12), 8699–8730.
https://doi.org/10.1166/jnn.2017.15041
[27] Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519–537.
https://doi.org/10.1007/s12571-012-0200-5
[28] Achterbosch, T., Dorp, M., Driel, W., Groot, J., van der Lee, J., & Verhagen, J. (2014). The food puzzle: Pathways to securing food for all.
https://edepot.wur.nl/305182
[29] Goswami, P., Mathur, J., & Srivastava, N. (2022). Silica nanoparticles as a novel sustainable approach for plant growth and crop protection. Heliyon, 8(7), e09908.
https://doi.org/10.1016/j.heliyon.2022.e09908
[30] Garza-García, J. J. O., Hernández-Díaz, J. A., Zamudio-Ojeda, A., León-Morales, J. M., Guerrero-Guzmán, A., Sánchez-Chiprés, D. R., et al. (2022). The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element Research, 200(5), 2528–2548.
https://doi.org/10.1007/s12011-021-02847-3
[31] Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089–1102.
https://doi.org/10.1016/j.scitotenv.2016.08.120
[32] Bapat, M. S., Singh, H., Shukla, S. K., Singh, P. P., Vo, D. V. N., Yadav, A., et al. (2022). Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. Chemosphere, 286, 131761.
https://doi.org/10.1016/j.chemosphere.2021.131761
[33] Hafeez, A., Razzaq, A., Mahmood, T., & Jhanzab, H. (2015). Potential of copper nanoparticles to increase growth and yield of wheat. Journal of Nanoscience and Advanced Technology.
[34] Ye, Y., Cota-Ruiz, K., Hernández-Viezcas, J. A., Valdés, C., Medina-Velo, I. A., Turley, R. S., et al. (2020). Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering, 8(3), 1427–1436.
https://doi.org/10.1021/acssuschemeng.9b05615
[35] Priyanka, N., Geetha, N., Ghorbanpour, M., & Venkatachalam, P. (2019). Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: Present status and future prospects. In Advances in Phytonanotechnology (pp. 183–201). Elsevier.
https://doi.org/10.1016/B978-0-12-815322-2.00007-9
[36] Marchiol, L., Filippi, A., Adamiano, A., Degli Esposti, L., Iafisco, M., Mattiello, A., et al. (2019). Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy, 9(4), 161.
https://doi.org/10.3390/agronomy9040161
[37] Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22.
https://doi.org/10.1007/s10311-016-0600-4
[38] Sabir, A., Yazar, K., Sabir, F., Kara, Z., Yazici, M. A., & Goksu, N. (2014). Vine growth, yield, berry quality attributes, and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae, 175, 1–8.
https://doi.org/10.1016/j.scienta.2014.05.021
[39] Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.
https://doi.org/10.3390/molecules24142558
[40] Najafi Disfani, M., Mikhak, A., Kassaee, M. Z., & Maghari, A. (2017). Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Archives of Agronomy and Soil Science, 63(6), 817–826.
https://doi.org/10.1080/03650340.2016.1239016
[41] Chellaram, C., Murugaboopathi, G., John, A. A., Sivakumar, R., Ganesan, S., Krithika, S., et al. (2014). Significance of nanotechnology in food industry. APCBEE Procedia, 8, 109–113.
https://doi.org/10.1016/j.apcbee.2014.03.010
[42] Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., Xiao, J., & Kai, G. (2020). Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Letters, 12(1), 45.
https://doi.org/10.1007/s40820-020-0383-9
[43] Shukla, S., Haldorai, Y., Hwang, S. K., Bajpai, V. K., Huh, Y. S., & Han, Y. K. (2017). Current demands for food-approved liposome nanoparticles in food and safety sector. Frontiers in Microbiology, 8.
https://doi.org/10.3389/fmicb.2017.02398
[44] Azeredo, H. M. C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena-Bustillos, R. J., & McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, 74(5), N31–N35.
https://doi.org/10.1111/j.1750-3841.2009.01186.x
[45] European Food Safety Authority (EFSA). (2009). The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA Journal, 7(3).
https://doi.org/10.2903/j.efsa.2009.958
[46] Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., et al. (2002). Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry, 92(1), 37–42.
https://doi.org/10.1016/s0162-0134(02)00489-0
[47] Godri Pollitt, K. J., Kim, J. H., Peccia, J., Elimelech, M., Zhang, Y., Charkoftaki, G., et al. (2019). 1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. Science of the Total Environment, 690, 853–866.
https://doi.org/10.1016/j.scitotenv.2019.06.443
[48] Kikani, M., Satasiya, G. V., Sahoo, T. P., Kumar, P. S., & Kumar, M. A. (2022). Remedial strategies for abating 1,4-dioxane pollution: Special emphasis on diverse biotechnological interventions. Environmental Research, 214, 113939.
https://doi.org/10.1016/j.envres.2022.113939
[49] Barndõk, H., Hermosilla, D., Han, C., Dionysiou, D. D., Negro, C., & Blanco, Á. (2016). Degradation of 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles. Applied Catalysis B: Environmental, 180, 44–52.
https://doi.org/10.1016/j.apcatb.2015.06.015
[50] Min, B. K., Heo, J. E., Youn, N. K., Joo, O. S., Lee, H., Kim, J. H., et al. (2009). Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania. Catalysis Communications, 10(5), 712–715.
https://doi.org/10.1016/j.catcom.2008.11.024
[51] Li, W., Xiao, R., Xu, J., Lin, H., Yang, K., Li, W., et al. (2022). Interface engineering strategy of a Ti4O7 ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane. Water Research, 216, 118287.
https://doi.org/10.1016/j.watres.2022.118287
[52] Kang, Y. G., Yoon, H., Lee, W., Kim, E. J., & Chang, Y. S. (2018). Comparative study of peroxide oxidants activated by nZVI: Removal of 1,4-dioxane and arsenic(III) in contaminated waters. Chemical Engineering Journal, 334, 2511–2519.
https://doi.org/10.1016/j.cej.2017.11.076
[53] Bhattacharjee, L. (2020). Degradation of 1,4-dioxane using metallic nanoparticles under visible light [Master's thesis, Southern Illinois University at Carbondale]. ProQuest.
https://www.proquest.com/docview/2435189611/abstract/74D242719ACF4D8FPQ/1
[54] Ouyang, D., Yan, J., Qian, L., Chen, Y., Han, L., Su, A., et al. (2017). Degradation of 1,4-dioxane by biochar-supported nano magnetite particles activating persulfate. Chemosphere, 184, 609–617.
https://doi.org/10.1016/j.chemosphere.2017.05.156
[55] Rahmani, A. R., Ghaffari, H. R., & Samadi, M. T. (2010). Removal of arsenic (III) from contaminated water by synthetic nano size zerovalent iron. Open Journal of Water Pollution and Treatment, 4(2).
https://doi.org/10.5281/zenodo.1329400
[56] Lung, I., Stan, M., Opris, O., Soran, M. L., Senila, M., & Stefan, M. (2018). Removal of Lead(II), Cadmium(II), and Arsenic(III) from aqueous solution using magnetite nanoparticles prepared by green synthesis with Box–Behnken design. Analytical Letters, 51(16), 2519–2531.
https://doi.org/10.1080/00032719.2018.1446974
[57] Monárrez-Cordero, B. E., Amézaga-Madrid, P., Leyva-Porras, C. C., Pizá-Ruiz, P., & Miki-Yoshida, M. (2016). Study of the adsorption of arsenic (III and V) by magnetite nanoparticles synthesized via AACVD. Materials Research, 19, 103–112.
https://doi.org/10.1590/1980-5373-MR-2015-0667
[58] Feng, L., Cao, M., Ma, X., Zhu, Y., & Hu, C. (2012). Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. Journal of Hazardous Materials, 217–218, 439–446.
https://doi.org/10.1016/j.jhazmat.2012.03.073
[59] Arsiya, F., Sayadi, M., & Sobhani, S. (2017). Arsenic (III) adsorption using palladium nanoparticles from aqueous solution. Journal of Water and Environment Nanotechnology, 2(3), 166–173.
https://doi.org/10.22090/jwent.2017.03.004
[60] Guillem-Navajas, A., Martín-Illán, J. Á., Salagre, E., Michel, E. G., Rodriguez-San-Miguel, D., & Zamora, F. (2022). Iron oxyhydroxide-covalent organic framework nanocomposite for efficient As(III) removal in water. ACS Applied Materials & Interfaces, 14(44), 50163–50170.
https://doi.org/10.1021/acsami.2c14744
[61] Ghosh, A., Kanrar, S., Nandi, D., Sasikumar, P., Biswas, K., & Chand Ghosh, U. (2020). Redox-assisted arsenic(III) adsorption for removal from aqueous solution by cerium(IV)-incorporated zirconium oxide nanocomposites. Journal of Chemical Engineering Data, 65(2), 885–895.
https://doi.org/10.1021/acs.jced.9b01075
[62] Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. Journal of Environmental Management, 91(11), 2238–2247.
https://doi.org/10.1016/j.jenvman.2010.06.003
[63] Sharma, M., Ramakrishnan, S., Remanan, S., Madras, G., & Bose, S. (2018). Nano tin ferrous oxide decorated graphene oxide sheets for efficient arsenic (III) removal. Nano-Structures & Nano-Objects, 13, 82–92.
https://doi.org/10.1016/j.nanoso.2017.12.007
[64] Kamath, V., Chandra, P., & Jeppu, G. P. (2020). Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. International Journal of Phytoremediation, 22(12), 1278–1294.
https://doi.org/10.1080/15226514.2020.1765139
[65] Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 356, 21–31.
https://doi.org/10.1016/J.JMMM.2013.12.008
[66] Toxin and Toxin Target Database (T3DB). (n.d.). PubChem Data Source.
https://pubchem.ncbi.nlm.nih.gov/source/Toxin%20and%20Toxin%20Target%20Database%20(T3DB)
[67] Khoso, W. A., Haleem, N., Baig, M. A., & Jamal, Y. (2021). Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFNs). Scientific Reports, 11(1), 3790.
https://doi.org/10.1038/s41598-021-83363-1
[68] Hong, J., Xie, J., Mirshahghassemi, S., & Lead, J. (2020). Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles. RSC Advances, 10(6), 3266–3276.
https://doi.org/10.1039/C9RA10104G
[69] Niu, S. F., Liu, Y., Xu, X. H., & Lou, Z. H. (2005). Removal of hexavalent chromium from aqueous solution by iron nanoparticles. Journal of Zhejiang University - Science B, 6(10), 1022–1027.
https://doi.org/10.1631/jzus.2005.B1022
[70] Ye, J., Wang, Y., Xu, Q., Wu, H., Tong, J., & Shi, J. (2021). Removal of hexavalent chromium from wastewater by Cu/Fe bimetallic nanoparticles. Scientific Reports, 11(1), 10848.
https://doi.org/10.1038/s41598-021-90414-0
[71] Gupta, V. K., Suhas, Nayak, A., Agarwal, S., Chaudhary, M., & Tyagi, I. (2014). Removal of Ni (II) ions from water using scrap tire. Journal of Molecular Liquids, 190, 215–222.
https://doi.org/10.1016/j.molliq.2013.11.008
[72] Sivaraman, S., Michael Anbuselvan, N., Venkatachalam, P., Ramiah Shanmugam, S., & Selvasembian, R. (2022). Waste tire particles as efficient materials towards hexavalent chromium removal: Characterization, adsorption behaviour, equilibrium, and kinetic modelling. Chemosphere, 295, 133797.
https://doi.org/10.1016/j.chemosphere.2022.133797
[73] Hajjaoui, H., Soufi, A., Khnifira, M., Abdennouri, M., Mahjoubi, F. Z., & Barka, N. (2023). Mono and binary mixture removal of eriochrome black T and Cr(VI) from water by SiO2/polyaniline composite. Materials Chemistry and Physics, 296, 127220.
https://doi.org/10.1016/j.matchemphys.2022.127220
[74] Zheng, C., Zheng, H., Sun, Y., Xu, B., Wang, Y., Zheng, X., et al. (2019). Simultaneous adsorption and reduction of hexavalent chromium on the poly(4-vinyl pyridine) decorated magnetic chitosan biopolymer in aqueous solution. Bioresource Technology, 293, 122038.
https://doi.org/10.1016/j.biortech.2019.122038
[75] Perez, T., Pasquini, D., de Faria Lima, A., Rosa, E. V., Sousa, M. H., Cerqueira, D. A., et al. (2019). Efficient removal of lead ions from water by magnetic nanosorbents based on manganese ferrite nanoparticles capped with thin layers of modified biopolymers. Journal of Environmental Chemical Engineering, 7(1), 102892.
https://doi.org/10.1016/j.jece.2019.102892
[76] Mahmoud, A. E. D., Al-Qahtani, K. M., Alflaij, S. O., Al-Qahtani, S. F., & Alsamhan, F. A. (2021). Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Scientific Reports, 11(1), 12547.
https://doi.org/10.1038/s41598-021-91093-7
[77] Zarrabi, A., & Ghasemi-Fasaei, R. (2022). Preparation of green synthesized copper oxide nanoparticles for efficient removal of lead from wastewaters. International Journal of Phytoremediation, 24(8), 855–866.
https://doi.org/10.1080/15226514.2021.1984385
[78] Kumar, K. Y., Raj, T. N. V., Archana, S., Prasad, S. B. B., Olivera, S., & Muralidhara, H. B. (2016). SnO2 nanoparticles as effective adsorbents for the removal of cadmium and lead from aqueous solution: Adsorption mechanism and kinetic studies. Journal of Water Process Engineering, 13, 44–52.
https://doi.org/10.1016/j.jwpe.2016.07.007
[79] Rahimi, S., Moattari, R. M., Rajabi, L., Derakhshan, A. A., & Keyhani, M. (2015). Iron oxide/hydroxide (α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. Journal of Industrial and Engineering Chemistry, 23, 33–43.
https://doi.org/10.1016/j.jiec.2014.07.039
[80] Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346.
https://doi.org/10.1016/j.jcis.2015.12.008
[81] Recillas, S., García, A., González, E., Casals, E., Puntes, V., Sánchez, A., et al. (2011). Use of CeO2, TiO2, and Fe3O4 nanoparticles for the removal of lead from water. Desalination, 277(1–3), 213–220.
https://doi.org/10.1016/j.desal.2011.04.036
[82] Lingamdinne, L. P., Koduru, J. R., & Rao Karri, R. (2019). Green synthesis of iron oxide nanoparticles for lead removal from aqueous solutions. Key Engineering Materials, 805, 122–127.
https://doi.org/10.4028/www.scientific.net/KEM.805.122
[83] Singh, R., & Bhateria, R. (2020). Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega, 5(19), 10826–10837.
https://doi.org/10.1021/acsomega.0c00450
[84] Dargahi, A., Gholestanifar, H., Darvishi, P., Karami, A., Hasan, S., Poormohammadi, A., et al. (2016). An investigation and comparison of removing heavy metals (lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. Polish Journal of Environmental Studies, 25.
https://doi.org/10.15244/pjoes/60281
[85] Mahdavi, S., Jalali, M., & Afkhami, A. (2013). Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chemical Engineering Communications, 200(3), 448–470.
https://doi.org/10.1080/00986445.2012.686939
[86] Shipley, H. J., Engates, K. E., & Grover, V. A. (2013). Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: Effect of sorbent concentration, pH, temperature, and exhaustion. Environmental Science and Pollution Research, 20(3), 1727–1736.
https://doi.org/10.1007/s11356-012-0984-z
[87] Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679.
https://doi.org/10.3390/ijerph17030679
[88] Agarwal, S., Tyagi, I., Gupta, V. K., Dehghani, M. H., Jaafari, J., Balarak, D., et al. (2016). Rapid removal of noxious nickel (II) using novel γ-alumina nanoparticles and multiwalled carbon nanotubes: Kinetic and isotherm studies. Journal of Molecular Liquids, 224, 618–623.
https://doi.org/10.1016/j.molliq.2016.10.032
[89] Rathor, G., Chopra, N., & Adhikari, T. (2014). Nickel as a pollutant and its management.
https://www.semanticscholar.org/paper/Nickel-as-a-Pollutant-and-its-Management-Rathor-Chopra/9e1f8453c6e7edfdc115b523e8dcdd08bb913af6
[90] Salmani, M. H., Ehrampoush, M. H., Aboueian-Jahromi, M., & Askarishahi, M. (2013). Comparison between Ag(I) and Ni(II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles. Journal of Environmental Health Science & Engineering, 11(1), 21.
https://doi.org/10.1186/2052-336X-11-21
[91] Gautam, R. K., Gautam, P. K., Banerjee, S., Soni, S., Singh, S. K., & Chattopadhyaya, M. C. (2015). Removal of Ni(II) by magnetic nanoparticles. Journal of Molecular Liquids, 204, 60–69.
https://doi.org/10.1016/j.molliq.2015.01.038
[92] Jain, M., Yadav, M., & Chaudhry, S. (2021). Copper oxide nanoparticles for the removal of divalent nickel ions from aqueous solution. Toxin Reviews, 40(4), 872–885.
https://doi.org/10.1080/15569543.2020.1799407
[93] Sharma, Y. C., Srivastava, V., Upadhyay, S. N., & Weng, C. H. (2008). Alumina nanoparticles for the removal of Ni(II) from aqueous solutions. Industrial & Engineering Chemistry Research, 47(21), 8095–8100.
https://doi.org/10.1021/ie800831v
[94] Jun, B. M., Lee, H. K., Park, S., & Kim, T. J. (2021). Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Separation and Purification Technology, 278, 119675.
https://doi.org/10.1016/j.seppur.2021.119675
[95] Li, Z. J., Wang, L., Yuan, L. Y., Xiao, C. L., Mei, L., Zheng, L. R., et al. (2015). Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 290, 26–33.
https://doi.org/10.1016/j.jhazmat.2010.01.060
[96] Crane, R. A., Dickinson, M., Popescu, I. C., & Scott, T. B. (2011). Magnetite and zero-valent iron nanoparticles for the remediation of uranium-contaminated environmental water. Water Research, 45(9), 2931–2942.
https://doi.org/10.1016/j.watres.2011.03.012
[97] Crane, R. A., Dickinson, M., & Scott, T. B. (2015). Nanoscale zero-valent iron particles for the remediation of plutonium and uranium contaminated solutions. Chemical Engineering Journal, 262, 319–325.
https://doi.org/10.1016/j.cej.2014.09.084
[98] El-Maghrabi, H. H., Younes, A. A., Salem, A. R., Rabie, K., & El-Shereafy, E. S. (2019). Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): Preparation, characterization and adsorption optimization. Journal of Hazardous Materials, 378, 120703.
https://doi.org/10.1016/j.jhazmat.2019.05.096
[99] Singhal, P., Jha, S. K., Pandey, S. P., & Neogy, S. (2017). Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. Journal of Hazardous Materials, 335, 152–161.
https://doi.org/10.1016/j.jhazmat.2017.04.043
[100] Abd El-Magied, M. O., Manaa, E. S. A., Youssef, M. A. M., Kouraim, M. N., Dhmees, A. S., & Eldesouky, E. M. (2021). Uranium removal from aqueous medium using Co0.5Mn0.5Fe2O4 nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 327(2), 745–753.
https://doi.org/10.1007/s10967-020-07571-1
[101] Helal, S., Mazario, E., Mayoral, A., Decorse, P., Losno, R., Lion, C., et al. (2018). Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: Succinyl-β-cyclodextrin-APTES@maghemite nanoparticles. Environmental Science: Nano, 5(1), 158–168.
https://doi.org/10.1039/C7EN00902J
[102] Huang, L., Zhang, L., & Hua, D. (2015). Synthesis of polyamidoxime-functionalized nanoparticles for uranium(VI) removal from neutral aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 305(2), 445–453.
https://doi.org/10.1007/s10967-015-3988-6
[103] Mahfouz, M. G., Galhoum, A. A., Gomaa, N. A., Abdel-Rehem, S. S., Atia, A. A., Vincent, T., et al. (2015). Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chemical Engineering Journal, 262, 198–209.
https://doi.org/10.1016/j.cej.2014.09.061
[104] Shao, D., Jiang, Z., Wang, X., Li, J., & Meng, Y. (2009). Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2²⁺ from aqueous solution. The Journal of Physical Chemistry B, 113(4), 860–864.
https://doi.org/10.1021/jp8091094
[105] Ahmad, M., Yang, K., Li, L., Fan, Y., Shah, T., Zhang, Q., et al. (2020). Modified tubular carbon nanofibers for adsorption of uranium(VI) from water. ACS Applied Nano Materials, 3(7), 6394–6405.
https://doi.org/10.1021/acsanm.0c00837
[106] Mohammed, M. A., Shitu, A., & Ibrahim, A. (2014). Removal of methylene blue using low-cost adsorbent: A review. Research Journal of Chemical Sciences, 4, 91–102.
[107] Saghi, M. H., Qasemi, M., Alidadi, H., Alahabadi, A., Rastegar, A., Kowsari, M. H., et al. (2020). Vanadium oxide nanoparticles for methylene blue water remediation: Exploring the effect of physicochemical parameters by process modeling. Journal of Molecular Liquids, 318, 114046.
https://doi.org/10.1016/j.molliq.2020.114046
[108] Hossan, M. S., & Ochiai, B. (2018). Preparation of TiO2-poly(3-chloro-2-hydroxypropyl methacrylate) nanocomposite for selective adsorption and degradation of dyes. Technologies, 6(4), 92.
https://doi.org/10.3390/technologies6040092
[109] Peres, E. C., Slaviero, J. C., Cunha, A. M., Hosseini–Bandegharaei, A., & Dotto, G. L. (2018). Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. Journal of Environmental Chemical Engineering, 6(1), 649–659.
https://doi.org/10.1016/j.jece.2017.12.062
[110] Yu, L., Keffer, D. J., Hsieh, C. T., Scroggins, J. R., Chen, H., Dai, S., et al. (2022). Lignin-derived magnetic activated carbons for effective methylene blue removal. Industrial & Engineering Chemistry Research, 61(32), 11840–11850.
https://doi.org/10.1021/acs.iecr.2c02311
[111] Bishnoi, S., Kumar, A., & Selvaraj, R. (2018). Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Materials Research Bulletin, 97, 121–127.
https://doi.org/10.1016/j.materresbull.2017.08.040
[112] Ruíz-Baltazar, Á. D. J., Reyes-López, S. Y., Mondragón-Sánchez, M. D. L., Robles-Cortés, A. I., & Pérez, R. (2019). Eco-friendly synthesis of Fe3O4 nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results in Physics, 12, 989–995.
https://doi.org/10.1016/j.rinp.2018.12.037
[113] Calimli, M. H., Nas, M. S., Burhan, H., Mustafov, S. D., Demirbas, Ö., & Sen, F. (2020). Preparation, characterization and adsorption kinetics of methylene blue dye in reduced-graphene oxide supported nanoadsorbents. Journal of Molecular Liquids, 309, 113171.
https://doi.org/10.1016/j.molliq.2020.113171
[114] Seliem, M. K., Barczak, M., Anastopoulos, I., & Giannakoudakis, D. A. (2020). A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: Kinetics and equilibrium studies. Nanomaterials, 10(4), 684.
https://doi.org/10.3390/nano10040684
[115] Jaseela, P. K., Garvasis, J., & Joseph, A. (2019). Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2) – poly vinyl alcohol (PVA) nanocomposite. Journal of Molecular Liquids, 286, 110908.
https://doi.org/10.1016/j.molliq.2019.110908
[116] Azeez, L., Adebisi, S. A., Adejumo, A. L., Busari, H. K., Aremu, H. K., Olabode, O. A., et al. (2022). Adsorptive properties of rod-shaped silver nanoparticles-functionalized biogenic hydroxyapatite for remediating methylene blue and Congo red. Inorganic Chemistry Communications, 142, 109655.
https://doi.org/10.1016/j.inoche.2022.109655
[117] Gong, J. L., Wang, B., Zeng, G. M., Yang, C. P., Niu, C. G., Niu, Q. Y., et al. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials, 164(2–3), 1517–1522.
https://doi.org/10.1016/j.jhazmat.2008.09.072
[118] Mittal, H., Ballav, N., & Mishra, S. B. (2014). Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of methylene blue from aqueous solution. Journal of Industrial and Engineering Chemistry, 20(4), 2184–2192.
https://doi.org/10.1016/j.jiec.2013.09.049
[119] Ran, X., Wang, L., Xiao, B., Lei, L., Zhu, J., Liu, Z., et al. (2022). Effective removal of methylene blue on EuVO4/g-C3N4 mesoporous nanosheets via coupling adsorption and photocatalysis. International Journal of Molecular Sciences, 23(17), 10003.
https://doi.org/10.3390/ijms231710003
[120] Zhang, P., Xiang, M., Liu, H., Yang, C., & Deng, S. (2019). Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: Insight into removal performance and mechanism. ACS Applied Materials & Interfaces, 11(27), 24027–24036.
https://doi.org/10.1021/acsami.9b04222
[121] Masuku, M., Ouma, L., & Pholosi, A. (2021). Microwave-assisted synthesis of oleic acid modified magnetite nanoparticles for benzene adsorption. Environmental Nanotechnology, Monitoring & Management, 15, 100429.
https://doi.org/10.1016/j.enmm.2021.100429
[122] Mosmeri, H., Alaie, E., Shavandi, M., Dastgheib, S. M. M., & Tasharrofi, S. (2017). Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: Synthesis and process optimization. Environmental Monitoring and Assessment, 189(9), 452.
https://doi.org/10.1007/s10661-017-6157-2
[123] Changsuphan, A., Wahab, M. I. B. A., & Kim Oanh, N. T. (2012). Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chemical Engineering Journal, 181–182, 215–221.
https://doi.org/10.1016/j.cej.2011.11.064
[124] Mosmeri, H., Gholami, F., Shavandi, M., Dastgheib, S. M. M., & Alaie, E. (2019). Bioremediation of benzene-contaminated groundwater by calcium peroxide (CaO2) nanoparticles: Continuous-flow and biodiversity studies. Journal of Hazardous Materials, 371, 183–190.
https://doi.org/10.1016/j.jhazmat.2019.02.071
[125] Mohammadi, L., Bazrafshan, E., Noroozifar, M., Ansari-Moghaddama, A. R., Khazaei Feizabad, A. R., & Mahvi, A. H. (2017). Optimization of the catalytic ozonation process using copper oxide nanoparticles for the removal of benzene from aqueous solutions. Global Journal of Environmental Science and Management, 3(4).
https://doi.org/10.22034/gjesm.2017.03.04.006
[126] Mahmoud, A. S., Mostafa, M. K., & Abdel-Gawad, S. A. (2017). Artificial intelligence for the removal of benzene, toluene, ethyl benzene, and xylene (BTEX) from aqueous solutions using iron nanoparticles. Water Supply, 18(5), 1650–1663.
https://doi.org/10.2166/ws.2017.225
[127] Abbas, A., Abussaud, B. A., Ihsanullah, U., Al-Baghli, N. A. H., Khraisheh, M., & Atieh, M. A. (2016). Benzene removal by iron oxide nanoparticles decorated carbon nanotubes. Journal of Nanomaterials, 2016, Article ID e5654129.
https://doi.org/10.1155/2016/5654129
[128] Mukherjee, R., & De, S. (2016). Novel carbon-nanoparticle polysulfone hollow fiber mixed matrix ultrafiltration membrane: Adsorptive removal of benzene, phenol and toluene from aqueous solution. Separation and Purification Technology, 157, 229–240.
https://doi.org/10.1016/j.seppur.2015.11.015
[129] Pourzamani, H., Samani Majd, A. M., & Fadaei, S. (2016). Benzene removal by hybrid of nanotubes and magnetic nanoparticle from aqueous solution. Desalination and Water Treatment, 57(40), 19038–19049.
https://doi.org/10.1080/19443994.2015.1098569
[130] Cesarino, I., Cesarino, V., Moraes, F. C., Ferreira, T. C. R., Lanza, M. R. V., Mascaro, L. H., et al. (2013). Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Materials Chemistry and Physics, 141(1), 304–309.
https://doi.org/10.1016/j.matchemphys.2013.05.015
[131] Ece, M. Ş. (2021). Synthesis and characterization of activated carbon supported magnetic nanoparticles (Fe3O4/AC@SiO2@Sulfanilamide) and its application in removal of toluene and benzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 617, 126231.
https://doi.org/10.1016/j.colsurfa.2021.126231
[132] Ece, M. Ş., Kutluay, S., Şahin, Ö., & Horoz, S. (2020). Development of novel Fe3O4/AC@SiO2@1,4-DAAQ magnetic nanoparticles with outstanding VOC removal capacity: Characterization, optimization, reusability, kinetics, and equilibrium studies. Industrial & Engineering Chemistry Research, 59(48), 21106–21123.
https://doi.org/10.1021/acs.iecr.0c03883
[133] Murindababisha, D., Yusuf, A., Sun, Y., Wang, C., Ren, Y., Lv, J., et al. (2021). Current progress on catalytic oxidation of toluene: A review. Environmental Science and Pollution Research, 28(44), 62030–62060.
https://doi.org/10.1007/s11356-021-16492-9
[134] Zhang, Z., Jiang, Z., & Shangguan, W. (2016). Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catalysis Today, 264, 270–278.
https://doi.org/10.1016/j.cattod.2015.10.040
[135] Yu, F., Ma, J., Wang, J., Zhang, M., & Zheng, J. (2016). Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene, and xylene removal from aqueous solution. Chemosphere, 146, 162–172.
https://doi.org/10.1016/j.chemosphere.2015.12.018
[136] Pourzamani, H., Hashemi, M., Bina, B., Rashidi, A., Amin DrM, & Parastar, S. (2018). Toluene removal from aqueous solutions using single-wall carbon nanotube and magnetic nanoparticle-hybrid adsorbent. Journal of Environmental Engineering (United States), 144, Article ID 04017101.
https://doi.org/10.1061/(ASCE)EE.19437870.0001318
[137] Mohammadi, L., Bazrafshan, E., Noroozifar, M., Ansari-Moghaddam, A., Barahuie, F., & Balarak, D. (2017). Adsorptive removal of benzene and toluene from aqueous environments by cupric oxide nanoparticles: Kinetics and isotherm studies. Journal of Chemistry, 2017, Article ID e2069519.
https://doi.org/10.1155/2017/2069519
[138] Azizi, A., Torabian, A., Moniri, E., Hassani, A. H., & Ahmad Panahi, H. (2016). Adsorption performance of modified graphene oxide nanoparticles for the removal of toluene, ethylbenzene, and xylenes from aqueous solution. Desalination and Water Treatment, 57(59), 28806–28821.
https://doi.org/10.1080/19443994.2016.1193769
[139] Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., et al. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198.
https://doi.org/10.1016/j.jhazmat.2012.01.011
[140] Ranjbari, E., Hadjmohammadi, M. R., Kiekens, F., & De Wael, K. (2015). Mixed hemi/ad-micelle sodium dodecyl sulfate-coated magnetic iron oxide nanoparticles for the efficient removal and trace determination of Rhodamine B and Rhodamine 6G. Analytical Chemistry, 87(15), 7894–7901.
https://doi.org/10.1021/acs.analchem.5b01676
[141] Alwan, S. H., Alshamsi, H. A. H., & Jasim, L. S. (2018). Rhodamine B removal on A-rGO/cobalt oxide nanoparticles composite by adsorption from contaminated water. Journal of Molecular Structure, 1161, 356–365.
https://doi.org/10.1016/j.molstruc.2017.11.127
[142] Huang, H., Zhang, J., Jiang, L., & Zang, Z. (2017). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of Rhodamine B. Journal of Alloys and Compounds, 718, 112–115.
https://doi.org/10.1016/j.jallcom.2017.05.132
[143] Yen Doan, T. H., Minh Chu, T. P., Dinh, T. D., Nguyen, T. H., Tu Vo, T. C., Nguyen, N. M., et al. (2020). Adsorptive removal of Rhodamine B using novel adsorbent-based surfactant-modified alpha alumina nanoparticles. Journal of Analytical Methods in Chemistry, 2020, Article ID e6676320.
https://doi.org/10.1155/2020/6676320
[144] Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370.
https://doi.org/10.1007/s12011-020-02138-3
[145] Xu, R., Li, Q., Nan, X., Jiang, G., Wang, L., Xiong, J., et al. (2022). Simultaneous removal of antimony(III/V) and arsenic(III/V) from aqueous solution by bacteria-mediated kaolin@Fe–Mn binary (hydr)oxides composites. Applied Clay Science, 217, 106392.
https://doi.org/10.1016/j.clay.2021.106392
[146] Kumar, H., Sinha, S. K., Goud, V. V., & Das, S. (2019). Removal of Cr(VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium Lysinibacillus sphaericus RTA-01. Journal of Environmental Health Science and Engineering, 17(2), 1001–1016.
https://doi.org/10.1007/s40201-019-00415-5
[147] Samuel, M. S., Datta, S., Chandrasekar, N., Balaji, R., Selvarajan, E., & Vuppala, S. (2021). Biogenic synthesis of iron oxide nanoparticles using Enterococcus faecalis: Adsorption of hexavalent chromium from aqueous solution and in vitro cytotoxicity analysis. Nanomaterials, 11(12), 3290.
https://doi.org/10.3390/nano11123290
[148] Yu, Y. Y., Cheng, Q. W., Sha, C., Chen, Y. X., Naraginti, S., & Yong, Y. C. (2020). Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(VI). Chemical Engineering Journal, 379, 122404.
https://doi.org/10.1016/j.cej.2019.122404
[149] Maity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P., Bundschuh, J., et al. (2018). Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption thermodynamics. Environmental Nanotechnology, Monitoring & Management, 9, 18–28.
https://doi.org/10.1016/j.enmm.2017.11.001
[150] Raj, R., Dalei, K., Chakraborty, J., & Das, S. (2016). Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. Journal of Colloid and Interface Science, 462, 166–175.
https://doi.org/10.1016/j.jcis.2015.10.004
[151] Kulal, D., & Shetty Kodialbail, V. (2021). Visible light mediated photocatalytic dye degradation using Ag2O/AgO-TiO2 nanocomposite synthesized by extracellular bacterial mediated synthesis: An eco-friendly approach for pollution abatement. Journal of Environmental Chemical Engineering, 9(4), 105389.
https://doi.org/10.1016/j.jece.2021.105389
[152] Martins, M., Mourato, C., Sanches, S., Noronha, J. P., Crespo, M. T. B., & Pereira, I. A. C. (2017). Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Research, 108, 160–168.
https://doi.org/10.1016/j.watres.2016.10.071
[153] Pan, X., Chen, Z., Chen, F., Cheng, Y., Lin, Z., & Guan, X. (2015). The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains. Journal of Hazardous Materials, 297, 313–319.
https://doi.org/10.1016/j.jhazmat.2015.05.019
[154] Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: An updated report. Saudi Pharmaceutical Journal, 24(4), 473–484.
https://doi.org/10.1016/j.jsps.2014.11.013
[155] Chauhan, N., Thakur, N., Kumari, A., Khatana, C., & Sharma, R. (2023). Mushroom and silk sericin extract mediated ZnO nanoparticles for removal of organic pollutants and microorganisms. South African Journal of Botany, 153, 370–381.
https://doi.org/10.1016/j.sajb.2023.01.001
[156] Obayomi, K. S., Oluwadiya, A. E., Lau, S. Y., Dada, A. O., Akubuo-Casmir, D., Adelani-Akande, T. A., et al. (2021). Biosynthesis of Tithonia diversifolia leaf mediated zinc oxide nanoparticles loaded with flamboyant pods (Delonix regia) for the treatment of methylene blue wastewater. Arabian Journal of Chemistry, 14(10), 103363.
https://doi.org/10.1016/j.arabjc.2021.103363
[157] Tahir, K., Nazir, S., Li, B., Ahmad, A., Nasir, T., Khan, A. U., et al. (2016). Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. Journal of Photochemistry and Photobiology B: Biology, 164, 164–173.
https://doi.org/10.1016/j.jphotobiol.2016.09.030
[158] Chan, Y. Y., Pang, Y. L., Lim, S., Chong, W. C., & Shuit, S. H. (2022). Plant-mediated synthesis of silver-doped ZnO nanoparticles with high sonocatalytic activity: Sonocatalytic behavior, kinetic, and thermodynamic study. Environmental Science and Pollution Research.
https://doi.org/10.1007/s11356-022-24145-8
[159] Munyai, S., Tetana, Z. N., Mathipa, M. M., Ntsendwana, B., & Hintsho-Mbita, N. C. (2021). Green synthesis of cadmium sulfide nanoparticles for the photodegradation of malachite green dye, sulfisoxazole, and removal of bacteria. Optik, 247, 167851.
https://doi.org/10.1016/j.ijleo.2021.167851
[160] Essien, E. A., Kavaz, D., & Solomon, M. M. (2018). Olive leaves extract mediated zero-valent iron nanoparticles: Synthesis, characterization, and assessment as adsorbent for nickel (II) ions in aqueous medium. Chemical Engineering Communications, 205(11), 1568–1582.
https://doi.org/10.1080/00986445.2018.1461089
[161] Muthukumar, H., Gire, A., Kumari, M., & Manickam, M. (2017). Biogenic synthesis of nano-biomaterial for toxic naphthalene photocatalytic degradation optimization and kinetics studies. International Biodeterioration & Biodegradation, 119, 587–594.
https://doi.org/10.1016/j.ibiod.2016.10.036
[162] Rafique, M., Tahir, R., Gillani, S. S. A., Tahir, M. B., Shakil, M., Iqbal, T., et al. (2022). Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium cumini for seed germination and wastewater purification. International Journal of Environmental Analytical Chemistry, 102(1), 23–38.
https://doi.org/10.1080/03067319.2020.1715379
[163] Karimi, P., Javanshir, S., Sayadi, M. H., & Arabyarmohammadi, H. (2019). Arsenic removal from mining effluents using plant-mediated, green-synthesized iron nanoparticles. Processes, 7(10), 759.
https://doi.org/10.3390/pr7100759
[164] Shah, Y., Maharana, M., & Sen, S. (2022). Peltophorum pterocarpum leaf extract mediated green synthesis of novel iron oxide particles for application in photocatalytic and catalytic removal of organic pollutants. Biomass Conversion and Biorefinery.
https://doi.org/10.1007/s13399-021-02189-z
[165] Verma, A., & Bharadvaja, N. (2022). Plant-mediated synthesis and characterization of silver and copper oxide nanoparticles: Antibacterial and heavy metal removal activity. Journal of Cluster Science, 33(4), 1697–1712.
https://doi.org/10.1007/s10876-021-02091-8
[166] Dubey, S., Chen, C. W., Haldar, D., Tambat, V. S., Kumar, P., Tiwari, A., et al. (2023). Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. Environmental Pollution, 317, 120840.
https://doi.org/10.1016/j.envpol.2022.120840
[167] Khan, F., Shahid, A., Zhu, H., Wang, N., Javed, M. R., Ahmad, N., et al. (2022). Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere, 293, 133571.
https://doi.org/10.1016/j.chemosphere.2022.133571
[168] Mukherjee, A., Sarkar, D., & Sasmal, S. (2021). A review of green synthesis of metal nanoparticles using algae. Frontiers in Microbiology, 12, Article 693899.
https://doi.org/10.3389/fmicb.2021.693899
[169] Borah, D., Saikia, P., Sarmah, P., Gogoi, D., Rout, J., Ghosh, N. N., et al. (2022). Composition controllable alga-mediated green synthesis of covellite CuS nanostructure: An efficient photocatalyst for degradation of toxic dye. Inorganic Chemistry Communications, 142, 109608.
https://doi.org/10.1016/j.inoche.2022.109608
[170] Mahana, A., & Mehta, S. K. (2021). Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: Kinetics and mechanism. Environmental Science and Pollution Research, 28(22), 28234–28250.
https://doi.org/10.1007/s11356-021-12682-7
[171] Shalaby, S. M., Madkour, F. F., El-Kassas, H. Y., Mohamed, A. A., & Elgarahy, A. M. (2021). Green synthesis of recyclable iron oxide nanoparticles using Spirulina platensis microalgae for adsorptive removal of cationic and anionic dyes. Environmental Science and Pollution Research, 28(46), 65549–65572.
https://doi.org/10.1007/s11356-021-15544-4
[172] Muthu Kumara Pandian, A., Gopalakrishnan, B., Rajasimman, M., Rajamohan, N., & Karthikeyan, C. (2021). Green synthesis of bio-functionalized nanoparticles for the application of copper removal: Characterization and modeling studies. Environmental Research, 197, 111140.
https://doi.org/10.1016/j.envres.2021.111140
[173] Wang, C., Bi, L., Liu, J., Huang, B., Wang, F., Zhang, Y., et al. (2023). Microalgae-derived carbon quantum dots mediated formation of metal sulfide nano-adsorbents with exceptional cadmium removal performance. Journal of Colloid and Interface Science, 629, 994–1002.
https://doi.org/10.1016/j.jcis.2022.08.188
[174] Khalafi, T., Buazar, F., & Ghanemi, K. (2019). Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Scientific Reports, 9(1), 6866.
https://doi.org/10.1038/s41598-019-43368-3
[175] El-Sheekh, M. M., El-Kassas, H. Y., Shams El-Din, N. G., Eissa, D. I., & El-Sherbiny, B. A. (2021). Green synthesis, characterization, and applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae. International Journal of Phytoremediation, 23(14), 1538–1552.
https://doi.org/10.1080/15226514.2021.1915957
[176] Ameen, F. (2022). Optimization of the synthesis of fungus-mediated bi-metallic Ag-Cu nanoparticles. Applied Sciences, 12(3), 1384.
https://doi.org/10.3390/app12031384
[177] Hammad, E., Salah Salem, S., Zohair, M., Mohamed, A., & El-Dougdoug, W. (2022). Purpureocillium lilacinum-mediated biosynthesis of copper oxide nanoparticles with promising removal of dyes. Biointerface Research in Applied Chemistry, 12, 1397–1404.
https://doi.org/10.33263/BRIAC122.13971404
[178] Kumar, R. V., Vinoth, S., Baskar, V., Arun, M., & Gurusaravanan, P. (2022). Synthesis of zinc oxide nanoparticles mediated by Dictyota dichotoma endophytic fungi and its photocatalytic degradation of fast green dye and antibacterial applications. South African Journal of Botany, 151, 337–344.
https://doi.org/10.1016/j.sajb.2022.03.016
[179] Li, J. F., Rupa, E. J., Hurh, J., Huo, Y., Chen, L., Han, Y., et al. (2019). Cordyceps militaris fungus mediated zinc oxide nanoparticles for the photocatalytic degradation of methylene blue dye. Optik, 183, 691–697.
https://doi.org/10.1016/j.ijleo.2019.02.081
[180] Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P., & Das, S. (2020). Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 385, 123790.
https://doi.org/10.1016/j.cej.2019.123790
[181] Shi, C., Zhu, N., Cao, Y., & Wu, P. (2015). Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Research Letters, 10(1), 147.
https://doi.org/10.1186/s11671-015-0856-9
[182] Patowary, R., Devi, A., & Mukherjee, A. K. (2023). Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: A prospective study. Environmental Science and Pollution Research, 30(30), 74459–74484.
https://doi.org/10.1007/s11356-023-27698-4
[183] Sacha, G. M., & Varona, P. (2013). Artificial intelligence in nanotechnology. Nanotechnology, 24(45), 452002.
https://doi.org/10.1088/0957-4484/24/45/452002
[184] Steffi, P. F., Thirumalaiyammal, B., Anburaj, R., & Mishel, P. F. (2022). Artificial intelligence in bioremediation modelling and clean-up of contaminated sites: Recent advances, challenges and opportunities. In V. Kumar & I. S. Thakur (Eds.), Omics insights in environmental bioremediation (pp. 683–702). Springer Nature.
https://doi.org/10.1007/978-981-19-4320-1_29