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 Due to widespread industrialization, urbanization, and modern agricultural 

techniques, an enormous number of pollutants are released into the 

environment. The contaminants can pollute air and water, threatening the 

ecosystem. It is challenging to get rid of these harmful pollutants from the 

environment. Recently, bioremediation aided by nanotechnology is the most 

promising method for cleaning up harmful pollutants due to its economical 

and promising advantages. Nanoparticles and their composites have a high 

surface-to-volume ratio and have a quick capacity to interact with diverse 

particles, making them a desirable tool in a variety of applications. Chemically 

synthesized nanoparticles with enhanced properties, e.g., reactivity, catalysis, 

and adsorption, have been the subject of significant interest. Nanomaterials 

made of gold, aluminium, zinc, titanium, and cerium have been acknowledged 

for their effectiveness and safety in the environment. Microbe-mediated 

nanoparticle synthesis has recently gained attention as it exhibits exceptional 

properties to make sustainable nanocomposites. Bacteria, algae, fungi, 

viruses, actinomycetes, and their extracts have been utilized as catalysts to 

create non-toxic, pure, and environmentally safe nanoparticles for the 

reduction of metals. Nanoparticles that are mediated by both chemicals and 

microbes can effectively target pollutants for bioremediation with an emphasis 

on environmental clean-up. In this review, the significance, advantages, and 

applications of biogenic synthesized nanoparticles, as well as modified and 

optimized nanoparticles mediated by chemicals and metals, were thoroughly 

examined for the removal of heavy pollutants. The importance and 

sustainability of this new nanobioremediation approach was also discussed. 

Keywords:  

Bioremediation 

Pollutant 

Nanoparticles 

Micro-organisms 

Sustainable technology. 

 

1. Introduction 

Water is a vital component for maintaining life on 

earth. With the rise of industrialization, water 

resources are exploited and facing immense 

pressure, resulting in increased contamination. 

Annually, millions of tons of pollutants are 
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discharged into water bodies. Thus, water 

purification from contaminants is a critical step in 

ensuring sustainability. Hazardous materials like 

pesticides, azo dyes, antibiotics, carcinogenic 

chemicals, byproducts, and other waste from 

manufacturing units, as well as radioactive 

elements like cobalt-60, radium-226, strontium-

90, cesium-137, and Uranium from nuclear plants 

and research institutes, are among the pollutants 

that contaminate water [1]. These pollutants have 

a detrimental effect on the quality of water and its 

life. Conventionally, diverse electrochemical, 

sophisticated oxidation, and valorization 

techniques have been used to lessen the toxicity of 

wastewater effluents and to make their use more 

sustainable [2].  

The marriage of nanotechnology with pollutant 

remediation is essential to replace expensive and 

complex procedures. Nanoremediation routes have 

advantages over other techniques due to their tiny 

size, high ratio of surface area to volume, catalysis 

actions, and simple process of production [3]. Due 

to the diverse properties of nanomaterials, they 

can efficiently remove contaminants from water 

and soil. Researchers are now interested in 

synthesizing significant nanoparticles (NPs), 

utilizing more straightforward and effective 

methods due to the novel applications of NPs in 

various industrial fields. The Agency for Harmful 

Substances and Disease Registry (ATSDR) notes 

that heavy metals like arsenic, mercury, lead, and 

cadmium are typically found in soil worldwide and 

are very toxic to both humans and crops. The 

ecosystem, climate, and human health are now 

being challenged by their levels and duration, 

which have grown significantly in recent years 

[3,4]. Over the last decade, the use of 

nanoremediation approach has become 

increasingly popular and can be accomplished 

through utilizing various materials such as metal 

and its derivatives, silica, carbon, nanotubes, 

polymers, and graphene-based materials, 

illustrated in Figure 1, to remove pollutants from 

both soil and water [3,5]. Therefore, new 

nanomaterials with improved features, such as 

high removal efficiencies or adsorption capacities 

and easier and less expensive production, are 

required for environmental remediation. 

The integration of nanoparticles and 

bioremediation results in a powerful method for 

pollution removal, capitalizing on biogenic sources 

for the synthesis of nanomaterials and enabling the 

efficient elimination of pollutants at substantial 

levels [6]. Biogenic mediated synthesis of 

nanoparticles primarily utilizes micro-organisms 

such as bacteria, algae, fungus, actinomycetes, 

and plants by extracellular as well as intracellular 

synthesis. This approach leads to the development 

of an eco-friendly, feasible, efficient, and reliable 

system that can abate pollutants easily. Moreover, 

it serves as an alternative conventional method and 

promotes green and sustainable technology as it 

generates a negligible amount of sludge to treat 

contaminated sites. The production of 

nanomaterials through biogenic methods primarily 

uses metal-based nanoparticles and their 

composites because of their vast range of 

applications, uses, and properties. The market for 

these metallic nanoparticles is projected to reach 

an astonishing 50 billion dollars worldwide by 2026 

[6–9].  

Figure 2 illustrates the process of microbe-based 

biogenic synthesis of various nanoparticles, their 

characterization, and the various ways in which 

they can be applied. The main focus of this review 

is on the chemogenic and biogenic synthesis of 

nanoparticles and their impacts, as well as the 

various applications of different types of 

nanoparticles in a wide range of industries, 

primarily in the field of remediation. Additionally, it 

explores future prospects of this technology.
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Fig. 1. Morphological analysis of Nanomaterials by TEM; A-CeO2 [81], B-NF-TiO2 [49], C-Iron-oxyhydroxide@COF [60], 

D-GO Sheets (5nm) [63], E-Ag CNT [88], F-Zno/Ag/GO composite [170], G-A-rGO/CO3O4 [141], H-Apatite Monolith 

[90], I-nZVI [173], J. MWCNT [130]; Adapted by Creative Commons license and Permissions. 

 
Fig. 2. Schematic representation of sources of biogenic mediated NPs and its synthesis process. Created with 

Biorender.com 

http://www.biorender.com/
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2. Nanomaterials and their applications 

Nanotechnology is a rapidly developing and 

innovative field that encompasses a diverse range 

of disciplines such as biology, chemistry, and 

material science. Given its vast potential and cost-

effective nature, the utilization and advancement 

of nanotechnology is being actively explored and 

developed in the recent decade. Nanomaterials 

possess exceptional imperium, such as the high 

surface area to volume, size ranges between (1-200 

nm), prolonged stability, ease of doing in surface 

engineering, and biocompatibility, which makes an 

impact in every field of applications. Applications 

of nanoparticles are not limited to nanotechnology 

but it is also applied in the field of drug delivery, 

where NPs are used as a transporter, cosmetics, 

agriculture, biomedical, nano-sensors, wound 

healing, biofuel, petroleum, and remediation 

[7,8,10,11]. Studies reported that various types of 

drugs like Rutin [12], Salinomycin [13], Hesperetin 

[14] are being transported to specific cancer sites 

by engineering nanoparticle surfaces with both 

polymers and antibodies to eradicate mighty 

cancer and its stem cells. NPs are also used in the 

bio-imaging of tissues or organs by the 

theranostics approach in humans as well as lower 

animals [15]. Moreover, siRNA is encapsulated 

inside nanoparticles to reduce the level of gene 

expression used as targeted gene therapy [16]. The 

integration of nanotechnology in modern-day 

agricultural systems and practices is emerging as a 

revolutionary approach to minimize the waste of 

fertilizers and its impact on human health and the 

environment. Various research has been conducted 

on the use of nano-sized pesticides, fungicides, and 

fertilizers, including the bioremediation of 

xenobiotics, to enhance plant health management 

and soil improvement [17]. 

2.1 Application of NPs in cancer therapy and 

diagnostics. 

India is renowned for its rich tradition of herbal 

medicine. A significant proportion of these drugs 

belong to the flavonoid class, which is a highly 

potent candidate to eradicate cancer; however, 

the challenge lies in targeted delivery and 

minimizing damage to healthy tissues [18,19]. 

Breast cancer is the leading cause of death among 

women globally, with roughly 15% of cases being 

classified as triple-negative breast cancer [20]. In 

recent years, liposome-based nanoparticles have 

gained widespread popularity as a means of 

enhancing the effectiveness of drug delivery across 

various routes of administration. Additionally, they 

are non-cytotoxic and stable over a long period of 

time [21]. Nanoparticles not only have the 

capability to deliver drug molecules but also have 

the potential to deliver siRNA to specific tissues not 

limited to cancer. [22] demonstrated that the 

silencing of the luc2 (luciferase) gene by its siRNA 

and target specificity was achieved by the 

conjugation of aptamer, which will bind to the 

CD44 ligand to the surface of the liposome in the 

breast cancer cell line. Liposome nanoparticles 

have demonstrated promising outputs in imaging 

technology by transporting potential agents for 

imaging and therapy in biomedical sciences [23]. 

Multiple contrasting agents (CAs) are commonly 

utilized in radiological and nuclear medicine, which 

enhances the image of quality of non-invasive 

methods. The radiological CAs used for magnetic 

resonance imaging (MRI) include iron oxide, 

manganese-based, Gadolinium-based, and iron-

platinum CAs. For X-ray-computed tomography 

(CT), iodine-based, lanthanide-based, bismuth, 

gold, and other metals are used as CAs. 

Phospholipids with sulfur hexafluoride, 

octafluoropropane, or perfluorobutane are used for 

ultrasonography (USG) [23–25]. 

2.2 Application of NPs in agriculture 

Agriculture and its practices are the primary 

junction between humans and the environment, 

significantly contributing to changes in soil and the 

ecosystem. Although chemicals are widely utilized, 

losses due to pathogens, animals, and weeds 

directly result in a yield reduction ranging from 20 

to 40%. Soil fertilization is a key aspect of 

contemporary organic agriculture. However, it is 

significantly inefficient and results in a 

considerable amount of waste. By taking 

advantage of encapsulation technology of drugs or 

molecules,  it can be applied in the field of 

agriculture [21,26,27]. The use of fertilizers and 

chemicals to enhance crop yield is on the rise 

globally in order to feed the increasing population, 

however, the waste generated by this process is 

also substantial [28]. It was extensively studied 

that nanoparticles like silica [29], selenium [30], 
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gold [31], silver [32], copper [33], manganese [34], 

copper oxide and zinc oxide [35] and 

hydroxyapatite [36] are used in various 

applications in agriculture [26] such as fertilizer 

and growth stimulant [37,38] which showed the 

promising potential of nanoparticles in enhancing 

crop production compared to traditional fertilizers. 

Nanocalcite mixture containing 40% of CaCO3, 4% 

nano SiO2, 1% MgO and 1% Fe2O3 not only improved 

the uptake of essential minerals such as Ca, Mg 

and Fe, but also significantly enhanced the uptake 

of Phosphorous and trace minerals like Zn and Mn 

[39]. It has been found that nanoformulation of 

Fe/SiO2 promotes germination as well as growth in 

barley and maize [40]. They utilized as 

nanopesticide, [37] extensively highlights the 

strong potential of silver NPs in combatting various 

phytopathogens such as Phoma, Botrytis cineria, 

Megnaporthe grisea, Fusarium culmorun and 

Biplaris sorokinniana etc. Furthermore, the 

nanoformulation of hexaconazole has been found 

to effectively eliminate pathogenic fungi such as 

red spider mite, R. Solani, E. cichoracearum. In the 

case of cucurbit mildew, the disease was 

completely eradicated through the use of silica NPs 

[26]. The use of nanoparticles in agriculture 

extends beyond just controlling plant diseases and 

improving growth and soil nutrients. It is vital to 

pick the appropriate NPs to ensure crop 

productivity, as not all NPs have been shown to be 

successful in enhancing plant growth and 

antifungal activity.  

2.3 Application of NPs in food industry 

In the current food and technology industries, 

efforts are being made to enhance or preserve the 

flavour, nutrient content, texture and especially 

the shelf life of food items. Nanoparticles are 

widely used for packaging and processing of it [41-

43] excellently reviewed that the additions of 

enzyme encapsulations inside liposome based NPs 

such as proteinases and lipase to cheese-curd has 

been highly praised for improving cheese firmness 

by suppressing proteolytic activity and enhancing 

its elasticity and cohesiveness, adding value to the 

final product, cheddar cheese. The encapsulation 

of ascorbic acid within liposomes proved that the 

antioxidant activity of it was held at 50%, whereas 

it was lost in a free solution. [44] developed edible 

nanocoating size ranges nearly 5 nm for serving as 

nano-barriers against gas and moisture, 

additionally, they can enhance the taste, colour, 

and antioxidants values in fruits, vegetables, foods, 

and bakery products. Titanium as well as silicon 

dioxide nanoparticles were utilized as food 

additives in huge quantities [45]. Silver is 

considered as an antimicrobial agent by eliciting 

reactive oxygen species from silver zeolite utilized 

in maintaining life of food for prolonged time [46], 

but silver nanocomposites remain dominant over 

silver zeolite. The use of nanoparticle and its 

composites in the food industry extends beyond 

packaging and processing and includes their 

application as sensors for detecting human 

pathogens, pesticides, and other substances. 

However, there are some drawbacks to using NPs, 

including difficulties with large-scale production, 

high cost, and limitations in technology scalability, 

stability issues with NPs, and the need for effective 

sterilization methods [41–43]. 

3. Pollutant remediation by chemogenic 

Nanoparticles 

The widespread use of nanoparticles has been 

implemented for the elimination of various toxic 

pollutants, including radioactive substances, azo 

dyes, antibiotics, heavy metals, and pesticides 

from both groundwater and soil (Table 1) [1,4]. 

Table 1. Chemogenic Nanomaterial for various pollutant 

Pollutant Nanomaterial Applied Source of Pollutant Removal 

Effectiveness 

Reference 

1,4-Dioxane     

1. Nitrogen and Fluorine co-doped 

with TiO2 

Industrial ~100% [49] 

2. Au-TiO2 Commercial 59% [50] 

3. GO/Fe3O4 doped into Ti4O7 Groundwater 85.4% [51] 

4. nZVI (Zero Valent Iron Groundwater 55% [52] 

5. nZVI (Zero Valent Iron Wastewater plant 99.9% [53] 
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Pollutant Nanomaterial Applied Source of Pollutant Removal 

Effectiveness 

Reference 

6. nFe3O4/biochar Commercial 98% [54] 

Arsenic     

1. nZVI (Zero Valent Iron Groundwater ~ 87% [52] 

2. nZVI (Zero Valent Iron Prepared by NaAsO2 99.9% [55] 

3. Magnetite Prepared by NaAsO2 and 

Na2 HAsO4.7H2O 

As+3 – 87% 

As+5 – 98% 

[57] 

4. Magnetite River water 48.26% [56] 

5. Ascorbic acid coated Fe3O4 Prepared by NaAsO2 and 

NaAsO4.12H2O 

As+3 – 16.56 mg.g-1  

As+5 – 40.06 mg.g-1 

[58] 

6. (Pd) Palladium Prepared by NaAsO2 99.8% [59] 

7. Iron-oxyhydroxide@COF Commercial 98.4% [60] 

8. Cerium(IV)-Incorporated Zirconium 

Oxide Nanocomposites 

Prepared by As2O3 17.07 mg.g-1 [61] 

9. Magnetite-maghemite Prepared by As2O3 and 

As2O5 

As+3 – 94% 

As+5 – 96% 

[62] 

10. Graphene oxide sheets Prepared by As2O3 105 mg.g-1 [63] 

11. Fe3O4 – Boron Nitrite Sheet Prepared by NaAsO2 30 mg.g-1 [64] 

12. Fe3O4 Commercial As+3 – 188.69 mg.g-1 

As+5 – 153.8 mg.g-1 

[65] 

13. Green Fe3O4 Prepared by 

Na2.HAsO4.7H2O 

As+5 – 39.84 mg.g-1 [64] 

Chromium 

(VI) 

    

1. Magnetite-maghemite Prepared by CrO3 85% [62] 

2. Nickel Ferrite Prepared by K2Cr2O7 89% [67] 

3. polyvinylpyrrolidone-coated 

magnetite nanoparticles 

Commercial ~100% [68] 

4. Iron (Fe0) Prepared by K2Cr2O7 100% [69] 

5. Fe3O4 Prepared by K2Cr2O7 38.47 mg.g-1 [80] 

6. Cu/Fe Bimetallic Nanoparticles Soil 84% [70] 

7. Activated tyre particle Prepared by K2Cr2O7 96.5% [72] 

8. SiO2/polyaniline composite Prepared by K2Cr2O7 99% [73] 

9. Poly(4-vinyl pyridine) decorated 

magnetic chitosan biopolymer 

(VMCP) 

Commercial 344.83 

mg.g-1 

[74] 

10. MgO Prepared by K2Cr2O7 81.25% [84] 

11. Scrap tire particles Industrial Wastewater 92.3% [71] 

Lead (Pb)     

1. Nickel Ferrite Prepared by [Pb (NO3)] 79% [67] 

2. Copper Oxide (CuO) Commercial 84% [76] 

3. Hematite (α-Fe2O3) Tap Water 100% [86] 

4. polyvinylpyrrolidone-coated 

magnetite nanoparticles 

Commercial 100% [68] 

5. SnO2 Prepared by Pb(NO3)2 1265.8 

mg.g-1 

[78] 

6. Copper oxide (CuO) Commercial 88.4% [77] 

7. Iron oxide/hydroxide Commercial ~820 mg.g-1 [79] 

8. Fe3O4 Prepared by Pb(NO3)2 53.11 mg.g-1 [80] 

9. carboxylate-ferroxane Prepared by Pb(NO3)2 94.79% [79] 

10. CeO2 Prepared by Pb(NO3)2 189 mg.g-1 [81] 

11. TiO2 Prepared by Pb(NO3)2 154 mg.g-1 [81] 

12. Fe3O4 Prepared by Pb(NO3)2 83 mg.g-1 [81] 

13. T-Fe3O4 Prepared by Pb(NO3)2 99 % [82] 
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Pollutant Nanomaterial Applied Source of Pollutant Removal 

Effectiveness 

Reference 

14. Manganese ferrite Commercial ~100% [75] 

15. Tin Oxide (SnO2) Prepared by Pb(NO3)2 1265.8 mg.g-1 [78] 

16. Magnetite Prepared by Pb(NO3)2 99% [3] 

17. Magnetite River water 98.8 ±5.6 % [56] 

18. Magnesium Oxide (MgO) Commercial 94% [85] 

Nickel (Ni)     

1. Polyvinylpyrrolidone-coated 

magnetite nanoparticles 

Commercial ~100 [68] 

2. Fe3O4 Prepared by 

Ni(NO3)2·6H2O 

209.2 – 362.3 mg.g-1 [91] 

3. Scrap Tire particles Industrial Wastewater 95.9% [71] 

4. Alumina Prepared by NiSO4 6H2O 96.6% [93] 

5. γ- Alumina Prepared by NiCl2 6H2O 99.41% [88] 

6. Multiwalled carbon nanotube Prepared by NiCl2 6H2O 87.65% [88] 

7. Copper Oxide (CuO) Commercial 52.5% [76] 

8. Iron Oxide (Fe2O3) Commercial 97% [90] 

9. Copper Oxide (CuO) Prepared by 

Ni(NO3)2·6H2O 

15.4 mg.g-1 [92] 

10. Magnesium Oxide (MgO) Commercial 94% [85] 

Uranium     

1. Hydroxyapatite nanoparticles Prepared by UO2(NO3)2 

6H2O 

310 mg.g-1 [98] 

2. nZVI Wastewater 98% [96] 

3. nZVI Prepared by UO2(NO3)2 

6H2O 

100% [95] 

4. nZVI Commercial 99% [97] 

5. Humic acid-coated Fe3O4 Seawater 39.4 mg.g-1 [99] 

6. Co0.5Mn0.5Fe2O4 Commercial 104 mg.g-1 [100] 

7. succinyl-β-cyclodextrin-

APTES@maghemite nanoparticles 

Prepared by 

UO2(C2H3O2)2·2H2O 

286 mg.g-1 [101] 

8. polyamidoxime-functionalized 

nanoparticles 

Prepared by UO2(NO3)2 

6H2O 

247 mg.g-1 [102] 

9. Amine-functionalized magnetic-

chitosan 

Prepared by 

UO2(C2H3O2)2·2H2O 

178 mg.g-1 [103] 

10. Multiwalled carbon nanotube Commercial 98% [104] 

11. COOH-modified hollow tubular 

nanofiber 

Prepared by UO2(NO3)2 

6H2O 

99.25% [105] 

12. SO3H modified hollow tubular 

nanofiber 

Prepared by UO2(NO3)2 

6H2O 

97% [105] 

Methylene 

Blue 

    

1. Vanadium Oxide (VO2) Commercial 235.7 mg.g-1 [107] 

2. Serpentine  decorated magnetic 

nanoparticles 

Commercial 162 mg.g-1 [114] 

3. GO supported Ni Nanoadsorbents Commercial 946.1 mg.g-1 [113] 

4. TiO2-PVA nanocomposite Commercial 97.1% [115] 

5. TiO2 – Poly nanocomposite Commercial 99% [108] 

6. Silica (SiO2) Commercial 80% [109] 

7. Magnetite Commercial 95% [110] 

8. 2D Magnetic Titanium Carbide Commercial 94% [120] 

9. Magnetic Iron Oxide Commercial 94% [111] 

10. Fe3O4 Commercial 100% [112] 

11. Gg-cl-PAA/Fe3O4 nanocomposites Commercial 719.4 mg.g-1 [118] 
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Pollutant Nanomaterial Applied Source of Pollutant Removal 

Effectiveness 

Reference 

12. Magnetic multi-wall carbon 

nanotube 

Commercial 15.74 mg.g-1 [117] 

13. Rod Shaped silver nanoparticles Commercial 1039 mg.g-1 [116] 

14. EuVO4/g-C3N4 Mesoporous 

Nanosheets 

Commercial ~100% [119] 

Benzene     

1. ZnO NPs coated on Zeolite Synthetize 98.9% [123] 

2. ZnO NPs coated on Activated 

carbon 

Synthesize 98.2% [123] 

3. Carbon nanotube Commercial 987.5 mg.g-1 [127] 

4. Magnetite Commercial 77 mg.g-1 [121] 

5. Fe3O4/ AC@SiO2@Sulfanilamide Commercial 557 mg.g-1 [131] 

6. Fe3O4/AC@SiO2@1,4-DAAQ Commercial 1232.77 mg.g-1 [132] 

7. nZVI Commercial 97% [126] 

8. Calcium peroxide Groundwater 42.8% [122] 

9. Cupric Oxide Commercial 98.7% [125] 

10. Calcium Peroxide Commercial 100% [124] 

11. Carbon NPs with hollow fiber 

membrane 

Commercial 97% [128] 

12. Copper Oxide Commercial 68.4% [125] 

13. SWCNT-MN Commercial 98.6% [129] 

14. Carbon nanotube decorated with 

silver NPs 

Natural water 77.9% [130] 

Toluene     

1. Fe3O4/ AC@SiO2@Sulfanilamide Commercial 612 mg.g-1 [131] 

2. Fe3O4/AC@SiO2@1,4-DAAQ Commercial 1352.16 mg.g-1 [132] 

3. nZVI Commercial 97% [126] 

4. Cupric Oxide Commercial 92.5% [125] 

5. Carbon NPs with hollow fiber 

membrane 

Commercial 82.8% [128] 

6. FeO-MWCNT Commercial 63.34% [135] 

7. GO NPs Commercial 56% [138] 

8. SWCNT-MN Commercial 99.6% [136] 

Rhodamine-

B 

    

1. Modified Fe3O4 nanoparticles with 

humic acid 

Commercial 98.5% [139] 

2. A-rGO/Co3O4 Commercial 102.9 mg.g-1 [141] 

3. Cu2O Commercial 95% [142] 

4. α-Al2O3 Commercial 100% [143] 

5. Magnetic iron oxide nanoparticles Commercial 98% [140] 

3.1 1,4-Dioxane 

According to ATSDR, 1,4-dioxane (1,4-D) is a 

colourless organic heterocyclic ether that has a 

range of industrial applications. Neglected and 

poor waste management can lead to the release of 

this toxic substance into the environment, where it 

has a strong attraction. Its presence poses a threat 

to marine and aquatic life, and 1,4-dioxane is 

believed to be a potential carcinogen and 

endocrine disruptor [47,48]. [49] showed the 

combination of nitrogen and fluorine in TiO2 

nanoparticles is an effective and economical 

solution for removing 1,4-dioxane through solar 

photocatalysis, with results showing close to 100% 

removal. Gold nanoparticles with TiO2 promoted 

degradation via photocatalytic process with 

effectiveness of 59% [50]. An 85.4% effectiveness 

to remove pollutant was observed by graphene 

oxide NPs engineered on Ti4O7 ceramic membrane, 
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after 15 cycles, the membrane integrity was 

maintained by this approach [51]. [52] reported 

that 55% 1,4-dioxane was broken down through 

various radical mechanisms in the selective order of 

efficiency being persulphate, followed by hydrogen 

peroxide and then peroxymonosulphate 

(PS>HP>PMS) at a pH of 3 by nano zero valent iron 

NPs (nZVI). Similarly, nZVI was utilized by [53] and 

reported that light intensities infer removal of 1,4-

D, after 6 h of irradiation 99.9% of pollutant was 

removed at 3.25 mW/cm2 light intensity. The study 

reported that the combination of nano magnetite 

particles and biochar (nFe3O4/biochar) resulted in 

a removal rate of 98% for 1,4-D after period of 120 

minutes [54]. 

3.2 Arsenic  

In terms of environmental contamination and 

toxicity, arsenic (III and V), a metalloid present in 

food and the environment in the soil, air, and 

water, is a significant problem. Inorganic arsenic, 

which is highly poisonous, carcinogenic, and 

extensively absorbed by the body, is frequently 

discovered in drinking water. Zero valent iron NPs 

are frequently used in the removal of arsenic 

contamination in aqueous solution mimicking the 

contaminated water and in groundwater with a 

removal efficiency of 99.9% and 87%, respectively 

[52,55]. Magnetite-based nanoparticles were 

synthesized using an aerosol-assisted chemical 

vapour deposition method. The solution was 

transformed into aerosol, and then thermal energy 

was applied to produce a fine powder. After 15 

mins, 87% of As+3 and 98% of As+5 were eliminated. 

The same type of NPs was used to test river water 

with arsenic contamination, showing 48.26% 

efficiency against removing pollutants [56,57]. 

[58] reported that Fe3O4 NPs surface engineered 

with ascorbic acid coating through the 

hydrothermal method was able to remove trivalent 

and pentavalent arsenic at 16.56 mg.g-1 and 40.06 

mg.g-1 concentration, respectively. It has been 

reported that palladium-based NPs synthesized 

using the green algae method have proven to be 

one of the most effective means of removing 

arsenic from groundwater, with an efficiency rate 

of 99.8% at a concentration of 0.5 g/L. This process 

only takes 5 minutes, making it a quick and 

efficient technology [59]. Novel nanocomposites 

were synthesized by [60] in which they reported 

that 98.4% of trivalent arsenic was removed 

successfully by engineering the covalent organic 

frameworks NPs by lepidocrocite nanorods. This 

framework had the potency to adsorb mercury as 

well as lead in even harsh conditions. Cerium ions 

were coated on a nanocomposite of zirconium 

oxide, which removed pollutants at 17.07 mg.g-1 

[61]. Combination of both magnetite and 

maghemite based NPs were synthesized and 

discovered to be more effective at pH 2 with 

adsorption capacity for trivalent and pentavalent 

ions of 94% and 96% respectively [62]. 

Interestingly, nano sheets are also in the race to 

remove pollutants, they were engineered by ferrous 

oxide ions with an adsorption capacity of 105 mg.g-1 

[63]. Green iron oxide as well as chemogenic iron 

oxide NPs were synthesized to remove pentavalent 

arsenic 39.84 mg.g-1 and 153.8 mg.g-1for 

pentavalent 188.69 mg.g-1 for trivalent arsenic 

contaminant [64,65]. 

3.3 Chromium 

Chromium is a heavy metal, typically in the form of 

trivalent chromium (Cr III) and hexavalent 

chromium (Cr VI). Cr(VI) is widely used in industries 

to manufacture products like paint, steel, alloys, 

and chrome, as well as in wood treatment [66]. 

Combination of two different types of NPs was 

reported that can remove 85% of the pollutant 

[62]. 89% of chromium was eliminated by nickel 

ferrite NPs [67]. Studies by [68] and [69] reported 

a 100% elimination of contaminants by magnetite 

NPs with a coating of polyvinylpyrrolidone and iron 

NPs, respectively. The use of bi-metallic NPs made 

of copper and iron to remediate chromium is a 

promising solution. This technique involves 

transforming Cr (VI) into Cr (III) through co-

precipitation and is effective to the tune of 84% 

[70]. Recently, an approach utilized waste 

materials such as activated tire particles and scrap 

tire particles. These materials exhibited high 

effectiveness in chromium removal, with reported 

rates of up to 96.5% and 92.3%. This method 

tackles chromium contamination and offers 

sustainable waste management [71,72]. A 

remarkable 99% and 81.23 % of the pollutant was 

removed by SiO2/polyaniline nanocomposite and 

MgO nanoparticles [71,73]. Magnetic chitosan 

coated with 4-vinyl pyridine nano biopolymer 
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effectively removed hexavalent pollutants at a 

344.83 mg/g concentration [74]. 

3.4 Lead 

Lead, a versatile metal used in construction, 

batteries, and more, poses health risks through 

water contamination and other sources. Its links to 

cancer remain inconclusive, yet exposure can harm 

immunity and increase mortality in animals. 

Removing lead from water is crucial for public 

health and groundwater quality [66]. Nickel ferrite 

nanoparticles show promise for environmental 

remediation due to their strong absorption, low 

conductivity, stability, and ferromagnetic 

properties, ensuring the effective removal of heavy 

metals without degradation. [67] reported that 

79% of heavy metal contaminated water has been 

remediated to restore its quality to fresh water, 

and manganese ferrite can effectively remove 

100% of lead contamination from aqueous solution 

[75]. Copper oxide nanoparticles are cost-effective 

and efficient in removing lead from water, with 

green synthesis methods investigated to ensure 

safety; they have an adsorption efficiency of 

around 84% and 88.4% [76,77]. In recent years, 

synthesizing metal oxide nanoparticles has 

intensified to enhance pollutant removal 

efficiency. Some of the most commonly used NPs 

in this endeavor include tin oxide, iron 

oxide/magnetite, cerium oxide, titanium oxide, 

magnesium oxide, and calcium oxide [78]. 

reported that 1265.8 mg.g-1 of pollutant removed 

from aqueous solution. 820 mg.g-1, 53.11 mg.g-1, 83 

mg.g-1, 99%, 98% and 99% of lead pollutant 

removed from mimic contaminated water by [79-

82,56 and 83] respectively. The report by [81] says 

that, it was found that among the three different 

NPs tested, CeO2 was the most effective option for 

removing lead contaminant, with a concentration 

of 189 mg.g-1 achieving the highest removal rate. 

[84,85] found that among the three different NPs 

tested, CeO2 was the most effective option for 

removing lead contaminant, with a concentration 

of 189 mg.g-1 achieving the highest removal rate. 

The modified form of iron oxide NPs, hematite, 

successfully removed all traces of lead from tap 

water [86] and hematite NPs were surface 

engineered with polyvinylpyrrolidone coating also 

showed 100% removal of all lead [68]. 

3.5 Nickel 

Nickel, a versatile transition metal, predominantly 

exists in its +2 oxidation state in nature and living 

organisms [87]. Nickel naturally occurs in surface 

water and soil, with human activities such as 

industrialization and agricultural practices 

increasing their concentration [88]. Establishing a 

safe level of nickel in water is challenging due to its 

carcinogenic properties. Workers in nickel refinery 

factories face increased risks of lung, nasal cavity, 

kidney, and prostate cancers compared to the 

general population [89]. [90], demonstrated that 

iron oxide NPs at a concentration of 40 g/L were 

highly effective in removing nickel from water, with 

a removal efficiency of 97%. Fe3O4 NPs removed 

contaminants in a range of 209.2-363.3 mg.g-1 [91]. 

CuO NPs were able to achieve a removal efficiency 

of 52.5% and a concentration of 15.4 mg.g-1, useful 

for localized treatments [76,92]. As an alternative 

to other metal oxide NPs, magnesium-based oxide 

NPs have demonstrated exceptional removal 

efficiency for nickel contamination in water with 

94% [85]. Polyvinylpyrrolidone was used to 

surface-engineer magnetite nanoparticles in order 

to maximize their ability to absorb and remove 

nickel contamination from water. The results 

showed this method was highly effective, with 

nearly all nickel contaminants being eradicated 

[68]. Alumina and γ- Alumina based NPs have been 

shown to be highly effective in eliminating nickel 

contamination in water. Both types of 

nanoparticles have demonstrated absorbance 

efficiency of 96.6 % and 99.41%, making them 

some of the most potent candidates for nickel 

removal [88,93]. It is not only spherical shaped NPs 

that are being used in the effort to remove nickel 

contamination, but multiwalled carbon nanotubes 

(MWCNTs) have also shown promise in removing 

nickel from water solution. [88] reported that 

MWCNT efficiently remove nickel with 87.65%. 

3.6 Uranium 

As society seeks economical, eco-friendly energy 

sources, nuclear energy gains attention for its 

reliability and low carbon footprint. Yet, uranium's 

biological toxicity remains a key challenge [94]. 

Illegal uranium waste harms ecosystems, 

contaminates soil and water, and endangers public 

health. Zero-valent iron is used to remove uranium 
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from water. [95] reported that complete 

elimination of uranium from aqueous solutions was 

possible using nanoscale zero valent iron (nZVI) 

particles and their graphene composites through 

precipitation. This method effectively removed all 

traces of uranium, resulting in a purified solution. 

[96,97] also used nZVI nanoparticles effectively to 

remove uranium from wastewater, initially 

achieving a 98% removal rate, later improving to 

99%. This highlights their strong potential for 

uranium elimination from contaminated water. 

This demonstrates the strong potential of nZVI NPs 

in the elimination of uranium from contaminated 

water. [98] reported that uranium remediation at 

a concentration of 310 mg.g-1. The effectiveness of 

removing uranium from seawater using Fe3O4 NPs 

coated with humic acid was found to be 39.4 mg.g-

1[99]. Co0.5Mn0.5Fe2O4 based NPs showed efficient 

elimination of uranium pollutant with effectiveness 

of 104 mg.g-1[100]. The extraction of uranium from 

wastewater by maghemite NPs grated by succinyl-

β-cyclodextrin was found to be an excellent option. 

It demonstrates a high removal capacity of 286 

mg.g-1 at pH 6 [101]. Polyamidoxime and amine 

functionalized chitosan based NPs showed high 

absorption efficacy toward uranium of 247 mg.g-1 

and 178 mg.g-1 respectively [102,103]. Carbon-

based materials like MWCNTs grafted by cellulose 

achieve exceptional uranium extraction rates, up 

to 98%, showcasing their potential in 

environmental remediation [104]. Modification of 

hollow tubular nanofibers with COOH and SO3H 

resulted in exceptional uranium removal rates of 

99.25% and 97%, respectively. These findings 

highlight the efficiency of modified nanofibers for 

uranium elimination [105]. 

3.7 Methylene Blue 

Methylene Blue (MB), a cationic thiazine dye, is 

extensively used across industries for its stability 

and vivid colour. However, its persistence and 

potential carcinogenicity necessitate efficient 

removal from industrial effluent to mitigate its 

environmental impact [106,107]. [108] reported 

that the combination of TiO2 and 3-chloro-2-

hydroxypropyl methacrylate resulted in the 

creation of a highly efficient nanocomposite. This 

nanocomposite was able to eliminate an impressive 

99% of MB in just 5 minutes at room temperature 

and remained 96% effective upon reuse. The 

specific efficiencies of each material were found to 

be 235.7 mg.g-1 for vanadium oxide [107], 80% for 

silicon dioxide [109], 95% for magnetite [110], 94% 

for magnetic iron oxide [111] and 100% removal 

from [112]. The remarkable dye removal 

capabilities of these materials showcase their 

potential for diverse applications. Graphene oxide 

supported nickel nano adsorbents, achieving a rate 

of 946.1 mg.g-1, while novel serpentine decorated 

magnetic nanoparticles extracted MB dye at a rate 

of 162 mg.g-1  [113,114]. Mesoporous TiO2 and 

polyvinyl alcohol nanocomposites, synthesized 

using a facile process, exhibited high effectiveness 

in treating MB dye. A 97.1% dye removal was 

achieved within eight minutes, highlighting the 

potential of combining inorganic and organic 

materials [115]. The utilization of two different NPs, 

namely chitosan and titanium oxide, resulted in the 

removal of 90.9% of MB dye from a solution by 

photodegradation. Researchers are exploring 

complex nanoparticle systems with associated 

materials to maximize dye absorption, signaling 

innovation for improved efficiency in remediation. 

2D magnetic titanium carbide, Gg-cl-PAA/Fe3O4 

nanocomposites, magnetic MWCNT, Rod shaped 

silver NPs, EuVO4/g-C3N4 mesoporous nanosheets 

remove MB dye with efficiency of 94%, 719.4 mg.g-

1, 15.74 mg.g-1, 1039 mg.g-1, 100% respectively [116–

120]. 

3.8 Benzene 

Benzene, a highly flammable liquid with solvent 

properties, is widely used in industry and 

commerce. Despite its usefulness, it poses 

significant health risks, including cancer, and 

requires careful management to minimize its 

impact on human health and the environment 

[66,121,122]. Zinc oxide NPs were coated on two 

different materials, zeolite and activated carbon in 

order to do comparative studies of benzene 

removal, It was found that ZnO NPs coated on 

zeolite have slightly higher removal efficiency than 

activated carbon, with 98.9% and 98.2% 

respectively [123]. [122,124] reported calcium 

peroxide as an effective pollutant remover, with a 

reported initial benzene removal of 42.8% from 

groundwater using its nanoparticles. Further 

research achieved 100% benzene removal. Copper 

oxide and cupric oxide showed high effectiveness, 

reaching 68.4% and 98.7% removal, respectively 
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[125]. Magnetite based NPs removed strontium 

contaminants at a maximum concentration of 77 

mg.g-1 [121]. nZVI is found out to be efficient NPs 

that remove 97% benzene from aqueous solution 

[126]. Researchers are exploring complex systems 

of nanoparticles and associated materials, like 

carbon sheets and tubes, to maximize benzene 

absorption, showcasing a growing interest in 

innovative remediation solutions. Integration of 

these components aims to enhance effectiveness. 

Carbon nanotubes [127], carbon NPs with hollow 

fiber membrane [128], single walled carbon 

nanotube [129] and carbon nanotube surface 

engineered with silver NPs [130] are excellently 

enhanced the extraction capacity of NPs for 

benzene, with 987.5 mg.g-1, 97%, 98.6% and 77.9% 

respectively. The combination of various materials 

to synthesize nanoparticles enhances their 

reduction capacity, considering that [131,132] 

reported that complex material like Fe3O4/ 

AC@SiO2@Sulfanilamide is highly effective to 

remove all contaminants at 557 mg.g-1 and 

Fe3O4/AC@SiO2@1,4-DAAQ NPs shows efficiency at 

1232.77 mg.g-1.  

3.9 Toluene 

Toluene is a flammable solvent used in 

manufacturing that poses serious health risks, 

including neurological damage and cancer. Its 

release into the environment contributes to smog 

and ozone depletion, emphasizing the need for 

careful handling and mitigation measures 

[66,133,134]. Carbon-based nanoparticles and 

tubes are widely used to remove toluene 

contaminants from aqueous solution. Carbon NPs 

with fiber membrane eliminated 82.8% of 

contaminants from water sources [128]. The 

utilization of multiwalled carbon nanotube 

(MWCNT) is doped with FeO to enhance the 

absorbance efficiency of NPs, it is found that FeO-

MWCNT removed 63.34% of the pollutant from 

water [135]. [136] reported that a high amount of 

absorbance was achieved by single-walled carbon 

nanotube (SWCNT), with the efficiency of 99.6%. 

In the last decade, various metal oxide NPs are 

utilized due to their phenomenal properties like 

stability, reduction rate, etc. Cupric oxide and nZVI 

NPs are used by [137] and [126] to achieve the 

maximum removal efficiency with 92.5% and 97% 

respectively. Graphene oxide NPs also showed 

potency of 56% to remove toluene pollutant from 

aqueous solution [138]. Complex NPs like Fe3O4/ 

AC@SiO2@Sulfanilamide and Fe3O4/AC@SiO2@1,4-

DAAQ synthesized to increase the reduction rate of 

NPs, with high removal effect of    612 mg.g-1 and 

1352.16 mg.g-1 , respectively [131,132]. 

3.10 Rhodamine B 

Rhodamine B (RhB) is a dye used in textiles but has 

health concerns due to its neurotoxic and 

carcinogenic effects. It is a fluorescent dye used in 

various scientific fields. RhB persists in the 

environment, accumulating in aquatic life and 

posing health risks in the food chain. Surface-

modified iron oxide nanoparticles are being 

explored to improve RhB removal efficiency, which 

is crucial for preventing environmental 

damage.[139] demonstrated that 98.5 % of dye 

has been extracted from aqueous solution by iron 

oxide NPs with modification of humic acid to its 

surface. Magnetic iron oxide NPs can remove the 

RhB from water with an effectiveness of 98% [140]. 

Additionally iron and nickel oxide NPs showed 

96.1% and 111 mg.g-1 extraction efficiency of RhB 

pollutant. [141] demonstrated that use of graphene 

oxide and cobalt oxide NPs to form a 

nanocomposite, which efficiently removes dye at 

102.9 mg.g-1 concentration. Copper oxide NPs alone 

showed significantly high removal efficiency with 

95% [142]. α-Al2O3 nano adsorbent was used to 

remove RhB contaminants from aqueous solution, 

the study showed that 100% removal of RhB was 

achieved [143]. 

4. Pollutant remediation by biogenic 

Nanoparticles 

In comparison to chemical and physical processes, 

the synthesis of nanoparticles (NPs) from 

biological sources, like as bacteria, actinobacteria, 

yeast, fungi, algae, and plants, is thought to be 

safer. Bacteria can adapt to high metal ion 

concentrations and transform them into NPs 

through enzymatic reduction [7,8,144] (Table 2).
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Table 2. Biogenic Nanomaterial for various pollutant 

 Source Pollutant Nanomaterial Applied Removal 

Effectiveness 

Reference 

Bacteria      

1. A. ferrooxidans Arsenic(III) kaolin@Fe–Mn binary (hydr) 

oxides composites 

62.92 mg.g-1 [145] 

2. Lysinibacillus sphaericus 

RTA-01 

Chromium (VI) Magnetic Iron Oxide 1052.63 mg.g-1 [146] 

3. Shewanella Chromium (VI) Iron Sulphide 565.6 mg.g-1 [148] 

4. Enterococcus faecalis Chromium (VI) Iron Oxide 98.03 mg.g-1 [147] 

5. Bacillus subtilis Fluoride Hydroxyapatite 97.26% [149] 

6. Pseudomonas 

aeruginosa JP-11 

Cadmium Cadmium Sulphide 88.66% [150] 

7. Alcaligenes aquatilis Reactive Blue 220 Ag2O/AgO-TiO2 96% [151] 

8. Desulfovibrio vulgaris 17β-estradiol Platinum 94% [152] 

9. Desulfovibrio vulgaris sulfamethoxazole Platinum 85% [152] 

10. B. thuringiensis  

BRC-ZYR3 

Uranium Production of Nano-

Uramphite 

98.7% [153] 

11. B. thuringiensis 

BRC-ZYR4 

Uranium Production of Nano-

Uramphite 

99.1% [153] 

Plant      

1. Tithonia diversifolia Methylene Blue Zinc Oxide 186 mg.g-1 [156] 

2. Sapium sebiferum Methylene Blue Palladium 90% [157] 

3. Lentinula edodes Methylene Blue Zinc Oxide 90% [155] 

4. Sutherlandia 

frutescence 

Malachite Green Cadmium Sulphide 91% [159] 

5. Olea europaea Nickel (II) nZVI 97% [160] 

6. Amaranthus dubius Napthalene ZnO-Fe 92.3% [161] 

7. Syzygium cumini Rhodamine B Zinc Oxide 98% [162] 

8. Prangos ferulacea & 

Teucrium polium 

Arsenic Iron  93.8% [163] 

9. Catharanthus roseus Chromiun Silver 47.84% [164] 

10. Peltophorum 

pterocarpum 

Rhodamine B Iron Oxide 95% [164] 

11. Clitoria ternatea Linn Malachite Green Ag-ZnO 98% [158] 

Algae      

1. Halimeda gracilis Copper Silver  85% [172] 

2. Microalgae Cadmium MnS/FeS 648.6 mg.g-1 [173] 

3. Chlorella ellipsoidea Methylene Blue Copper Sulphide 80.06 [169] 

4. Chlorella Dibenzothiophene Zinc oxide 97% [174] 

5. S. dimorphus Methylene Blue ZnO Nanorod 100% [170] 

6. Spirulina platensis Methyl Orange Iron Oxide 256.4 mg.g-1 [171] 

7. Spirulina platensis Crystal Violet Iron Oxide 270 mg.g-1 [171] 

8. P. pavonica Total Nitrogen Iron Oxide 89.8% [175] 

9. P. pavonica Total 

Phosphorous 

Iron Oxide 93.96% [175] 

Fungus      

1. Purpureocillium 

lilacinum 

Navy Blue Copper Oxide 57.5% [177] 

2. Purpureocillium 

lilacinum 

Safranin Copper Oxide 63% [177] 

3. Aspergillus niger BSC-1 Chromium Iron Oxide 99% [180] 

4. Pycnoporus sanguineus 4-nitroaniline Gold 100% [181] 

5. Cordyceps militaris Methylene Blue Zinc Oxide 97% [179] 

6. Dictyota dichotoma Green dye Zinc Oxide 90% [178] 

 
 



 V. Gaud et al. / Advances in Environmental Technology 11(3) 2025, 300-328.   313 

 

4.1 Bacteria mediated NPs 

Metal nanoparticles (NPs) such as Ag, Au, Cu, Se, 

and Fe, as well as metal oxide NPs like silver oxide 

(Ag2O), copper oxide (CuO), zinc oxide (ZnO), 

titanium oxide (TiO2), manganese oxide (MnO2), 

magnesium oxide (MgO), and iron oxide etc. have 

all been produced by using bacteria as a biological 

nanofactory. It is not limited to only metal oxide 

NPs some other NPs are also synthesized by 

bacterial include hydroxyapatite, platinum and 

other composites. A. ferrooxidans is used to 

synthesize kaolin@Fe–Mn binary (hydr) oxides 

composites to extract the arsenic contaminations 

that are generally found in water bodies, with 

removal effectiveness at 62.92 mg.g-1 [145]. [146] 

reported that utilization of Lysinibacillus sphaericus 

RTA-01 bacterial strain synthesized the magnetic 

iron oxide NPs showed high efficacy for chromium 

remediation at 1052.63 mg.g-1. Similarly, 

Shewanella and Enterococcus faecalis strain 

utilized to make iron sulphide NPs to eradicate 

chromium (VI) contamination from aqueous 

solution, with efficacy of at 565.6 mg.g-1 and 98.03 

mg.g-1, respectively [147,148]. Fluoride pollutant 

contamination was removed with 97.26% by 

hydroxyapatite NPs mediated from Bacillus subtilis 

[149]. 88.66% of cadmium contaminated water 

cleaned by Pseudomonas aeruginosa JP-11 

mediated cadmium sulphide NPs [150]. Ag2O/AgO-

TiO2 NPs were synthesized from Alcaligenes 

aquatilis to remediate reactive blue 220 dye, a 

study shows 96% removal of dye [151]. 

Desulfovibrio vulgaris strain was used to extract the 

17β-estradiol and sulfamethoxazole contamination 

by platinum based NPs, with high efficiency of 94% 

and 85% respectively [152]. Nano uramphite was 

mediated by B. thuringiensis BRC-ZYR3 and B. 

thuringiensis BRC-ZYR4 to transform radioactive 

pollutant like uranium into uramphite, uranium 

which is highly hazardous to human health, with 

effectiveness of 98.7% and 99.1%, respectively 

[153]. 

4.2 Plant mediated NPs 

Plant-mediated nanoparticle production is eco-

friendly and sustainable, utilizing plant extracts for 

synthesizing various nanoparticles with reduced 

environmental impact [154]. Methylene blue is a 

heterocyclic dye that occurs in water bodies due to 

its wide use in the textile and food industry. It is 

remediated by zinc oxide and palladium based NPs 

that are synthesized from Tithonia diversifolia, 

Sapium sebiferum, Lentinula edodes to remove MB 

dye, with efficiency over at 186 mg.g-1, 90% and 

90% respectively [155–157]. Additionally, malachite 

pollutant removed with efficacy of 91% and 98% by 

cadmium sulphide NPs and Ag decorated zinc oxide 

NPs mediated by Sutherlandia frutescence and 

Clitoria ternatea Linn, respectively [158,159]. Nickel 

metal pollutant were remediated by nZVI mediated 

from Olea europaea, showed removal efficiency of 

97% [160]. [161] reported that, they achieved 

92.3% removal efficiency of Naphthalene by Zinc 

oxide NPs doped with iron which is prepared from 

Amaranthus dubius. Rhodmine B dye was extracted 

by zinc oxide NPs with efficacy rate of 98% from 

Syzygium cumini [162]. [163] reported that 

carcinogenic arsenic was removed by iron NPs with 

excellent efficiency of 93.8% from Prangos 

ferulacea & Teucrium polium. Chromium and 

Rhodamine B extracted by iron oxide based NPs 

with efficiency of 47.84% and 95% mediated from 

Catharanthus roseus & Peltophorum pterocarpum 

[164,165]. 

4.3 Algae mediated NPs 

In the future, nanotechnology combined with 

phytoremediation will play a key role in 

environmental recovery, offering sustainable 

solutions. Microalgae, due to their unique 

properties, are particularly advantageous for 

nanoparticle synthesis, offering benefits over 

larger plants. Microalgae, such as Chlorella and 

Microsystis, are studied for their potential in 

bioremediation, utilizing their enzymes for 

converting contaminants into safer compounds 

extracellularly or intracellularly [8,166–168]. 

Noxious methylene blue dye was extracted by 

copper sulphide and zinc oxide NPs, with an 

efficiency rate of 80.06% and 100% mediated by 

Chlorella ellipsoidea and S. dimorphus [169,170]. 

Spirulina platensis utilized to synthesize iron oxide 

NPs to degrade harmful dyes like methyl orange 

and crystal violet, with efficiency of 256.4 mg.g-1 

and 270 mg.g-1 [171]. [172] reported that 85% 

removal of copper from aqueous solution by silver 

NPs mediated from Halimeda gracilis. Cadmium 

was removed with an efficacy rate at 648.6 mg.g-1 

by MnS/FeS NPs by microalgae [173]. Chlorella 
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mediated zinc oxide showed 97% removal of 

dibenzothiophene [174]. Iron oxide NPs were 

utilized from P. pavonica against nitrogen and 

phosphorus, showed removal efficacy of 89.8% and 

93.96% respectively [175]. 

4.4 Fungus mediated NPs 

The growing use of fungi in nanoparticle (NP) 

production is driven by their efficiency in reducing 

metal salts to synthesize NPs. Fungi produce 

proteins and catalysts, facilitating rapid synthesis, 

while their resistance to metals and ability to 

accumulate them make them excellent NP 

candidates. This method yields NPs with specific 

sizes and shapes and holds promise for large-scale 

industrial production [8,176]. Purpureocillium 

lilacinum strain was used to extract the navy blue 

and safranin dye from aqueous solution by copper 

oxide NPs, showing effectiveness of 57.5% and 63% 

respectively [177]. Zinc oxide NPs were synthesized 

from Cordyceps militaris and Dictyota dichotoma 

to eliminate methylene blue and green dye, with 

efficiency of 97% and 90% respectively [178,179]. 

Aspergillus niger BSC-I strain was used to 

synthesized iron oxide NPs for remediation of 

noxious chromium with adsorption rate of 99% 

[180]. Gold NPs were mediated from Pycnoporus 

sanguineus with an absorption rate of 100% for 4-

nitroaniline [181]. 

5. Artificial Intelligence and Machine Learning in 

nanobioremediation 

AI is revolutionizing technology, including 

bioremediation, by aiding in nanoparticle design 

and environmental cleanup. Machine Learning 

forecasts nanomaterial characteristics and 

pollutant interactions, reducing trial and error. 

Predictive models simulate nanomaterial 

behaviour in varying conditions, enhancing 

remediation efficiency. AI accelerates 

nanoremediation development, though challenges 

like data availability and autonomous software 

persist. Overall, AI optimizes material design, 

process efficiency, and decision-making in 

nanobioremediation, improving environmental 

cleanup sustainability [182–184]. 

4. Conclusions 

The remediation of toxic pollutants from the 

environment has become a crucial concern, and 

many methods have been developed to address the 

removal of hazardous and radioactive 

contaminants. The marriage of nanoscience and 

remediation/bioremediation could be a sustainable 

solution. The removal of toxic pollutants by 

chemogenic and biogenic synthesized NPs. 

Integration of NPs and micro-organisms opens new 

approaches for eco-friendly approaches to 

remediate pollutants. There is an urgent necessity 

of developing an economically effective, simple 

and efficient technique for removal of 

contaminants from polluted sites and bodies. 

Future research in nanotechnology and 

remediation could provide the high reactive 

composites by chemogenic method and in-depth 

mechanism of micro-organisms in remediation. 

Both approaches have advantages and 

disadvantages of their own, but they can be 

explored for large-scale remediation of 

contaminants. 
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