[1] Valipour, L., Naserin, A., & Jalily, S. (2022). Investigating the Relationship between Hydrological Drought and the Electrical Conductivity of the River in the Downstream Stations of the Karkheh River. Iranian journal of Ecohydrology, 9(4), 815-831.
https://doi.org/10.22059/ije.2023.352632.1703
[2] Bhat, B., Parveen, S., & Hassan, T. (2018). Seasonal assessment of physicochemical parameters and evaluation of water quality of river Yamuna, India. Advances in environmental technology, 4(1), 41-49.
https://doi.org/10.22104/aet.2018.2415.1121
[3] Movagharnejad, K., Tahavvori, A., & Moghaddam Ali, F. (2017). Artificial neural network modeling for predicting of some ion concentrations in the Karaj River. Advances in environmental technology, 3(2), 109-117.
https://doi.org/10.22104/aet.2017.1802.1084
[4] Daneshi, J., Naserin, A. & Jalily, S. (2023). Determining the best discharge-suspended sediment relationship based on different time classifications and correction coefficients (Case study: Bashar River). Iranian Journal of Ecohydrology, 10(1), 113-125.
https://doi.org/10.22059/ije.2023.356861.1719
[5] Allan, J. D., Castillo, M. M., & Capps, K. A. (2021). Stream ecology: structure and function of running waters. Springer Nature.
https://doi.org/10.1007/978-3-030-61286-3
[6] Blaszczak, J. R., Koenig, L. E., Mejia, F. H., Gómez‐Gener, L., Dutton, C. L., Carter, A. M., ... & Cohen, M. J. (2023). Extent, patterns, and drivers of hypoxia in the world's streams and rivers. Limnology and Oceanography Letters, 8(3), 453-463.
https://doi.org/10.1002/lol2.10297
[7] Miranda, L. E., & Krogman, R. M. (2014). Environmental stressors afflicting tailwater stream reaches across the United States. River Research and Applications, 30(9), 1184-1194.
https://doi.org/10.1002/rra.2705
[8] Pardo, I., & García, L. (2016). Water abstraction in small lowland streams: Unforeseen hypoxia and anoxia effects. Science of the Total Environment, 568, 226-235.
https://doi.org/10.1016/j.scitotenv.2016.05.218
[9] Gorgan-Mohammadi, F., Rajaee, T., & Zounemat-Kermani, M. (2023). Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water. Sustainable Water Resources Management, 9(1), 1.
https://doi.org/10.1007/s40899-022-00776-0
[10] Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373.
https://doi.org/10.1002/wat2.1373
[11] Piatka, D. R., Wild, R., Hartmann, J., Kaule, R., Kaule, L., Gilfedder, B., ... & Barth, J. A. (2021). Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review. Earth-Science Reviews, 220, 103729.
https://doi.org/10.1016/j.earscirev.2021.103729
[12] Dordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., & Barth, J. A. (2022). Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in lentic water bodies. Science of The Total Environment, 838, 156541.
https:doi.org/10.1016/j.scitotenv.2022.156541
[13] Liqoarobby, R., Suparman, Y., & Fadilah, K. (2021). Aqueous systems of dissolved oxygen in reservoir. In E3S Web of Conferences (Vol. 249, p. 03015). EDP Sciences.
https://doi.org/10.1051/e3sconf/202124903015
[14] Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., & Bobée, B. (2007). A review of statistical water temperature models. Canadian Water Resources Journal, 32(3), 179-192.
https://doi.org/10.4296/cwrj3203179
[15] Maheu, A., St-Hilaire, A., Caissie, D., El-Jabi, N., Bourque, G., & Boisclair, D. (2016). A regional analysis of the impact of dams on water temperature in medium-size rivers in eastern Canada. Canadian Journal of Fisheries and Aquatic Sciences, 73(12), 1885-1897.
https://doi.org/10.1139/cjfas-2015-0486
[16] Leach, J. A., & Moore, R. D. (2019). Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resources Research, 55(7), 5453-5467.
https://doi.org/10.1029/2018WR024236
[17] Woltemade, C. J., & Hawkins, T. W. (2016). Stream temperature impacts because of changes in air temperature, land cover and stream discharge: Navarro River watershed, California, USA. River Research and Applications, 32(10), 2020-2031.
https://doi.org/10.1002/rra.3043
[18] Streeter, H. W., & Phelps, E. B. (1925). A study of the pollution and natural purification of the Ohio River (No. 146). United States Public Health Service.
[19] Caissie, D., & Luce, C. H. (2017). Quantifying streambed advection and conduction heat fluxes. Water Resources Research, 53(2), 1595-1624. https://doi.org/10.1002/2016WR019813
[20] Salarijazi, M., & Ghorbani, K. (2019). Improvement of the simple regression model for river’EC estimation. Arabian Journal of Geosciences, 12(7), 235.
https://doi.org/10.1007/s12517-019-4392-2
[21] Mohseni, O., Stefan, H. G., & Erickson, T. R. (1998). A nonlinear regression model for weekly stream temperatures. Water resources research, 34(10), 2685-2692.
https://doi.org/10.1029/98WR01877
[22] Piotrowski, A. P., & Napiorkowski, J. J. (2019). Simple modifications of the nonlinear regression stream temperature model for daily data. Journal of Hydrology, 572, 308-328.
https://doi.org/10.1016/j.jhydrol.2019.02.035
[23] Basarin, B., Lukić, T., Pavić, D., & Wilby, R. L. (2016). Trends and multi‐annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30(18), 3315-3329.
https://doi.org/10.1002/hyp.10863
[24] Feng, M., Zolezzi, G., & Pusch, M. (2018). Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Science of the Total Environment, 612, 1266-1275.
https://doi.org/10.1016/j.scitotenv.2017.09.042
[25] Arismendi, I., Safeeq, M., Johnson, S. L., Dunham, J. B., & Haggerty, R. (2013). Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota? Hydrobiologia, 712, 61-70.
https://doi.org/10.1007/s10750-012-1327-2
[26] Lubega, W. N., & Stillwell, A. S. (2018). Maintaining electric grid reliability under hydrologic drought and heat wave conditions. Applied energy, 210, 538-549. https://doi.org/10.1016/j.apenergy.2017.06.091
[27] Ni, J., Cheng, Y., Wang, Q., Ng, C. W. W., & Garg, A. (2019). Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494-502.
https://doi.org/10.1016/j.jhydrol.2019.02.009
[28] Ficklin, D. L., Stewart, I. T., & Maurer, E. P. (2013). Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research, 49(5), 2765-2782.
https://doi.org/10.1002/wrcr.20248
[29] Jackson, F. L., Fryer, R. J., Hannah, D. M., & Malcolm, I. A. (2017). Can spatial statistical river temperature models be transferred between catchments? Hydrology and Earth System Sciences, 21(9), 4727-4745.
https://doi.org/10.5194/hess-21-4727-2017, 2017
[30] Van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., & Kabat, P. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47(2).
https://doi.org/10.1029/2010WR009198
[31] Rosencranz, J., Cuddington, K., Brook, M., Koops, M. A., & Drake, D. A. (2021). Data-limited models to predict river temperatures for aquatic species at risk. Canadian Journal of Fisheries and Aquatic Sciences, 78(9), 1268-1277.
https://doi.org/10.1139/cjfas-2020-0294
[32] Harvey, R., Lye, L., Khan, A., & Paterson, R. (2011). The influence of air temperature on water temperature and the concentration of dissolved oxygen in Newfoundland Rivers. Canadian Water Resources Journal, 36(2), 171-192.
https://doi.org/10.4296/cwrj3602849
[33] Post, C. J., Cope, M. P., Gerard, P. D., Masto, N. M., Vine, J. R., Stiglitz, R. Y., ... & Mikhailova, E. A. (2018). Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network. Environmental Monitoring and assessment, 190, 1-14.
https://doi.org/10.1007/s10661-018-6646-y
[34] Hu, Y., Liu, C., & Wollheim, W. M. (2024). Prediction of riverine daily minimum dissolved oxygen concentrations using hybrid deep learning and routine hydrometeorological data. Science of The Total Environment, 918, 170383.
https://doi.org/10.1016/j.scitotenv.2024.170383
[35] Rajesh, M., & Rehana, S. (2022). Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Scientific reports, 12(1), 9222.
https://doi.org/10.1029/2021WR031347
[36] dos Santos, J. M., Trentin, G., Martins, M. L., Barbosa, S. C., & Primel, E. G. (2024). Spatial and seasonal variations in coastal water physicochemical parameters in a southeastern Brazilian watershed. International Journal of Environmental Science and Technology, 21(2), 1403-1418.
https://doi.org/10.1007/s13762-023-05062-w
[37] Jane, S. F., Hansen, G. J., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., ... & Rose, K. C. (2021). Widespread deoxygenation of temperate lakes. Nature, 594(7861), 66-70.
https://doi.org/10.1038/s41586-021-03550-y
[38] Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, 131(1), 139-146.
https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)
[39] Al-Jashaami, D. S., & Al-Zubaidi, H. A. (2023). Non-linear regression of air-water temperature for modelling surface heat fluxes in waterbodies: A case study of Laurance Lake, US. Materials Today: Proceedings, 80, 2631-2637.
https://doi.org/10.1016/j.matpr.2021.07.003
[40] Harvey, R. R. (2009). Statistical regression models and control charts for the real time water quality network in Newfoundland (Doctoral dissertation, Memorial University of Newfoundland).
http://research.library.mun.ca/id/eprint/9286
[41] Choi, S. Y., & Seo, I. W. (2018). Prediction of fecal coliform using logistic regression and tree-based classification models in the North Han River, South Korea. Journal of Hydro-environment Research, 21, 96-108.
https://doi.org/10.1016/j.jher.2018.09.002
[42] Chen, G., & Fang, X. (2015). Accuracy of hourly water temperatures in rivers calculated from air temperatures. Water, 7(3), 1068-1087.
https://doi.org/10.3390/w7031068
[43] Erickson, T. R., & Stefan, H. G. (2000). Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering, 5(3), 317-321.
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317)
[44] Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: a physical interpretation. Journal of hydrology, 218(3-4), 128-141.
https://doi.org/10.1016/S0022-1694(99)00034-7
[45] Majerska, M., Osuch, M., & Wawrzyniak, T. (2024). Long-term patterns and changes of unglaciated High Arctic stream thermal regime. Science of the Total Environment, 923, 171298.
https://doi.org/10.1016/j.scitotenv.2024.171298
[46] Cai, H., Piccolroaz, S., Huang, J., Liu, Z., Liu, F., & Toffolon, M. (2018). Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environmental Research Letters, 13(5), 054016.
https://doi.org/10.1088/1748-9326/aab9e0
[47] Qiu, R., Wang, Y., Rhoads, B., Wang, D., Qiu, W., Tao, Y., & Wu, J. (2021). River water temperature forecasting using a deep learning method. Journal of Hydrology, 595, 126016.
https://doi.org/10.1016/j.jhydrol.2021.126016
[48] Sibanda, T., Chigor, V. N., Koba, S., Obi, C. L., & Okoh, A. I. (2014). Characterisation of the physicochemical qualities of a typical rural-based river: ecological and public health implications. International Journal of Environmental Science and Technology, 11, 1771-1780.
https://doi.org/10.1007/s13762-013-0376-z
[49] Papafilippaki, A. K., Kotti, M. E., & Stavroulakis, G. G. (2008). Seasonal variations in dissolved heavy metals in the Keritis River, Chania, Greece. Global nest. The international journal, 10(3), 320-325.
https://www.researchgate.net/profile/Androniki-nina-Papafilippaki/publication/243399088
[50] Evangelou, V. P. (2022). Environmental soil and water chemistry. A Wiley-Interscience Publication.
http://ngc.digitallibrary.co.in/handle/123456789/2313
[51] Suchan, J., & Azam, S. (2021). Effect of salinity on evaporation from water surface in bench-scale testing. Water, 13(15), 2067.
https://doi.org/10.3390/w13152067
[52] Majerova, M., Neilson, B. T., & Roper, B. B. (2020). Beaver dam influences on streamflow hydraulic properties and thermal regimes. Science of the Total Environment, 718, 134853.
https://doi.org/10.1016/j.scitotenv.2019.134853
[53] Poole, G. C., & Berman, C. H. (2001). An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-causedthermal degradation. Environmental management, 27, 787-802.
https://doi.org/10.1007/s002670010188
[54] Rajwa-Kuligiewicz, A., Bialik, R. J., & Rowiński, P. M. (2015). Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. Journal of Hydrology and Hydromechanics, 63(4), 353-363.
https://doi.org/10.1515/johh-2015-0041
[55] Huryn, A. D., Benstead, J. P., & Parker, S. M. (2014). Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology, 95(10), 2826-2839.
https://doi.org/10.1890/13-1963.1
[56] Hall Jr, R. O., Yackulic, C. B., Kennedy, T. A., Yard, M. D., Rosi‐Marshall, E. J., Voichick, N., & Behn, K. E. (2015). Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado river, grand canyon. Limnology and Oceanography, 60(2), 512-526.
https://doi.org/10.1002/lno.10031
[57] Demars, B. O., Gíslason, G. M., Ólafsson, J. S., Manson, J. R., Friberg, N., Hood, J. M., ... & Freitag, T. E. (2016). Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nature Geoscience, 9(10), 758-761.
https://doi.org/10.1038/ngeo2807
[58] Gnauck, A., Li, B.L., Fuego, J.D.A., Luther, B., 2010. The role of statistics for long-term ecological research. In: Muller, F., Baessler, C., Schubert, H., Klotz, S. (Eds.), Long-Term Ecological Research. Between Theory and Application, Springer-Verlag, Berlin, pp. 107–129.
https://doi.org/10.1007/978-90-481-8782-9_8