Evaluation of some regression models in the prediction of dissolved oxygen and water temperature of the Jarreh Dam, Iran

Document Type : Research Paper

Authors

Department of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

Abstract

The climate change phenomenon has resulted in increased unpredictability regarding water availability in dry and semi-dry areas. This challenge affects not just the amount of water accessible but also intensifies worries about the quality of water. Water quality is impacted by climate change, specifically through extreme fluctuations in precipitation and temperature and, consequently, more runoff and evaporation rates. The warmer temperature and less precipitation affect water temperature as well as ecosystem health. It is essential to consider how changes in water temperature (Tw) and dissolved oxygen (DO) levels are influenced by heat exchange with the surrounding environment to evaluate water quality comprehensively. The primary goal of this research is to assess alterations in Tw and DO utilizing regression models within the Jarreh Dam reservoir in southwestern Iran. The findings indicated that air temperature had a considerable impact on Tw, as the large reservoir of the dam reduced the influence of other weather factors and hydraulic conditions on variations in Tw and DO. The accuracy of Tw estimation increased with longer time scales, and using logistic equations further improved this precision. Additionally, the effects of stage fluctuations on Tw and DO were minimal due to slight variations in relative water depth. Consequently, it was essential to consider both the direct effects of temperature and the indirect influences of factors like water salinity when evaluating the impacts of climate change on dissolved oxygen in rivers. Additionally, of the two evaluated chemical parameters, the electrical conductivity model was important because of its impact on biological activities. In large water reservoirs where high turbulence through modifications is unfeasible, considering chemical and biological parameters may be more effective for optimizing DO levels than just adjusting water levels.

Graphical Abstract

Evaluation of some regression models in the prediction of dissolved oxygen and water temperature of the Jarreh Dam, Iran

Keywords

Main Subjects


[1]   Valipour, L., Naserin, A., & Jalily, S. (2022). Investigating the Relationship between Hydrological Drought and the Electrical Conductivity of the River in the Downstream Stations of the Karkheh River.  Iranian journal of Ecohydrology,  9(4), 815-831.
https://doi.org/10.22059/ije.2023.352632.1703
[2]   Bhat, B., Parveen, S., & Hassan, T. (2018). Seasonal assessment of physicochemical parameters and evaluation of water quality of river Yamuna, India. Advances in environmental technology, 4(1), 41-49.
https://doi.org/10.22104/aet.2018.2415.1121
[3]   Movagharnejad, K., Tahavvori, A., & Moghaddam Ali, F. (2017). Artificial neural network modeling for predicting of some ion concentrations in the Karaj River. Advances in environmental technology, 3(2), 109-117.
https://doi.org/10.22104/aet.2017.1802.1084
[4]   Daneshi, J., Naserin, A. & Jalily, S. (2023). Determining the best discharge-suspended sediment relationship based on different time classifications and correction coefficients (Case study: Bashar River). Iranian Journal of Ecohydrology, 10(1), 113-125.
https://doi.org/10.22059/ije.2023.356861.1719
[5]   Allan, J. D., Castillo, M. M., & Capps, K. A. (2021). Stream ecology: structure and function of running waters. Springer Nature.
https://doi.org/10.1007/978-3-030-61286-3
[6]  Blaszczak, J. R., Koenig, L. E., Mejia, F. H., Gómez‐Gener, L., Dutton, C. L., Carter, A. M., ... & Cohen, M. J. (2023). Extent, patterns, and drivers of hypoxia in the world's streams and rivers. Limnology and Oceanography Letters, 8(3), 453-463.
https://doi.org/10.1002/lol2.10297
[7]   Miranda, L. E., & Krogman, R. M. (2014). Environmental stressors afflicting tailwater stream reaches across the United States. River Research and Applications, 30(9), 1184-1194.
https://doi.org/10.1002/rra.2705
[8]  Pardo, I., & García, L. (2016). Water abstraction in small lowland streams: Unforeseen hypoxia and anoxia effects. Science of the Total Environment, 568, 226-235.
https://doi.org/10.1016/j.scitotenv.2016.05.218
[9]  Gorgan-Mohammadi, F., Rajaee, T., & Zounemat-Kermani, M. (2023). Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water. Sustainable Water Resources Management, 9(1), 1.
https://doi.org/10.1007/s40899-022-00776-0
[10] Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373.
https://doi.org/10.1002/wat2.1373
[11]  Piatka, D. R., Wild, R., Hartmann, J., Kaule, R., Kaule, L., Gilfedder, B., ... & Barth, J. A. (2021). Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review. Earth-Science Reviews, 220, 103729.
https://doi.org/10.1016/j.earscirev.2021.103729
[12] Dordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., & Barth, J. A. (2022). Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in lentic water bodies. Science of The Total Environment, 838, 156541.
https:doi.org/10.1016/j.scitotenv.2022.156541
[13] Liqoarobby, R., Suparman, Y., & Fadilah, K. (2021). Aqueous systems of dissolved oxygen in reservoir. In E3S Web of Conferences (Vol. 249, p. 03015). EDP Sciences.
https://doi.org/10.1051/e3sconf/202124903015
[14] Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., & Bobée, B. (2007). A review of statistical water temperature models. Canadian Water Resources Journal, 32(3), 179-192.
https://doi.org/10.4296/cwrj3203179
[15] Maheu, A., St-Hilaire, A., Caissie, D., El-Jabi, N., Bourque, G., & Boisclair, D. (2016). A regional analysis of the impact of dams on water temperature in medium-size rivers in eastern Canada. Canadian Journal of Fisheries and Aquatic Sciences, 73(12), 1885-1897.
https://doi.org/10.1139/cjfas-2015-0486
[16] Leach, J. A., & Moore, R. D. (2019). Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resources Research, 55(7), 5453-5467.
https://doi.org/10.1029/2018WR024236
[17] Woltemade, C. J., & Hawkins, T. W. (2016). Stream temperature impacts because of changes in air temperature, land cover and stream discharge: Navarro River watershed, California, USA. River Research and Applications, 32(10), 2020-2031.
https://doi.org/10.1002/rra.3043
[18] Streeter, H. W., & Phelps, E. B. (1925). A study of the pollution and natural purification of the Ohio River (No. 146). United States Public Health Service.
[19] Caissie, D., & Luce, C. H. (2017). Quantifying streambed advection and conduction heat fluxes. Water Resources Research, 53(2), 1595-1624. https://doi.org/10.1002/2016WR019813
[20] Salarijazi, M., & Ghorbani, K. (2019). Improvement of the simple regression model for river’EC estimation. Arabian Journal of Geosciences, 12(7), 235.
https://doi.org/10.1007/s12517-019-4392-2
[21] Mohseni, O., Stefan, H. G., & Erickson, T. R. (1998). A nonlinear regression model for weekly stream temperatures. Water resources research, 34(10), 2685-2692.
https://doi.org/10.1029/98WR01877
[22] Piotrowski, A. P., & Napiorkowski, J. J. (2019). Simple modifications of the nonlinear regression stream temperature model for daily data. Journal of Hydrology, 572, 308-328.
https://doi.org/10.1016/j.jhydrol.2019.02.035
[23] Basarin, B., Lukić, T., Pavić, D., & Wilby, R. L. (2016). Trends and multi‐annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30(18), 3315-3329.
https://doi.org/10.1002/hyp.10863
[24] Feng, M., Zolezzi, G., & Pusch, M. (2018). Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Science of the Total Environment, 612, 1266-1275.
https://doi.org/10.1016/j.scitotenv.2017.09.042
[25] Arismendi, I., Safeeq, M., Johnson, S. L., Dunham, J. B., & Haggerty, R. (2013). Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota? Hydrobiologia, 712, 61-70.
https://doi.org/10.1007/s10750-012-1327-2
[26] Lubega, W. N., & Stillwell, A. S. (2018). Maintaining electric grid reliability under hydrologic drought and heat wave conditions. Applied energy, 210, 538-549. https://doi.org/10.1016/j.apenergy.2017.06.091
[27] Ni, J., Cheng, Y., Wang, Q., Ng, C. W. W., & Garg, A. (2019). Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494-502.
https://doi.org/10.1016/j.jhydrol.2019.02.009
[28] Ficklin, D. L., Stewart, I. T., & Maurer, E. P. (2013). Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research, 49(5), 2765-2782.
https://doi.org/10.1002/wrcr.20248
[29] Jackson, F. L., Fryer, R. J., Hannah, D. M., & Malcolm, I. A. (2017). Can spatial statistical river temperature models be transferred between catchments? Hydrology and Earth System Sciences, 21(9), 4727-4745.
https://doi.org/10.5194/hess-21-4727-2017, 2017
[30] Van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., & Kabat, P. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47(2).
https://doi.org/10.1029/2010WR009198
[31] Rosencranz, J., Cuddington, K., Brook, M., Koops, M. A., & Drake, D. A. (2021). Data-limited models to predict river temperatures for aquatic species at risk. Canadian Journal of Fisheries and Aquatic Sciences, 78(9), 1268-1277.
https://doi.org/10.1139/cjfas-2020-0294
[32] Harvey, R., Lye, L., Khan, A., & Paterson, R. (2011). The influence of air temperature on water temperature and the concentration of dissolved oxygen in Newfoundland Rivers. Canadian Water Resources Journal, 36(2), 171-192.
https://doi.org/10.4296/cwrj3602849
[33] Post, C. J., Cope, M. P., Gerard, P. D., Masto, N. M., Vine, J. R., Stiglitz, R. Y., ... & Mikhailova, E. A. (2018). Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network. Environmental Monitoring and assessment, 190, 1-14.
https://doi.org/10.1007/s10661-018-6646-y
[34] Hu, Y., Liu, C., & Wollheim, W. M. (2024). Prediction of riverine daily minimum dissolved oxygen concentrations using hybrid deep learning and routine hydrometeorological data. Science of The Total Environment, 918, 170383.
https://doi.org/10.1016/j.scitotenv.2024.170383
[35] Rajesh, M., & Rehana, S. (2022). Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Scientific reports, 12(1), 9222.
https://doi.org/10.1029/2021WR031347
[36] dos Santos, J. M., Trentin, G., Martins, M. L., Barbosa, S. C., & Primel, E. G. (2024). Spatial and seasonal variations in coastal water physicochemical parameters in a southeastern Brazilian watershed. International Journal of Environmental Science and Technology, 21(2), 1403-1418.
https://doi.org/10.1007/s13762-023-05062-w
[37] Jane, S. F., Hansen, G. J., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., ... & Rose, K. C. (2021). Widespread deoxygenation of temperate lakes. Nature, 594(7861), 66-70.
https://doi.org/10.1038/s41586-021-03550-y
[38] Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, 131(1), 139-146.
https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)
[39] Al-Jashaami, D. S., & Al-Zubaidi, H. A. (2023). Non-linear regression of air-water temperature for modelling surface heat fluxes in waterbodies: A case study of Laurance Lake, US. Materials Today: Proceedings, 80, 2631-2637.
https://doi.org/10.1016/j.matpr.2021.07.003
[40] Harvey, R. R. (2009). Statistical regression models and control charts for the real time water quality network in Newfoundland (Doctoral dissertation, Memorial University of Newfoundland).
http://research.library.mun.ca/id/eprint/9286
[41] Choi, S. Y., & Seo, I. W. (2018). Prediction of fecal coliform using logistic regression and tree-based classification models in the North Han River, South Korea. Journal of Hydro-environment Research, 21, 96-108.
https://doi.org/10.1016/j.jher.2018.09.002
[42] Chen, G., & Fang, X. (2015). Accuracy of hourly water temperatures in rivers calculated from air temperatures. Water, 7(3), 1068-1087.
https://doi.org/10.3390/w7031068
[43] Erickson, T. R., & Stefan, H. G. (2000). Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering, 5(3), 317-321.
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317)
[44] Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: a physical interpretation. Journal of hydrology, 218(3-4), 128-141.
https://doi.org/10.1016/S0022-1694(99)00034-7
[45] Majerska, M., Osuch, M., & Wawrzyniak, T. (2024). Long-term patterns and changes of unglaciated High Arctic stream thermal regime. Science of the Total Environment, 923, 171298.
https://doi.org/10.1016/j.scitotenv.2024.171298
[46] Cai, H., Piccolroaz, S., Huang, J., Liu, Z., Liu, F., & Toffolon, M. (2018). Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environmental Research Letters, 13(5), 054016.
https://doi.org/10.1088/1748-9326/aab9e0
[47] Qiu, R., Wang, Y., Rhoads, B., Wang, D., Qiu, W., Tao, Y., & Wu, J. (2021). River water temperature forecasting using a deep learning method. Journal of Hydrology, 595, 126016.
https://doi.org/10.1016/j.jhydrol.2021.126016
[48] Sibanda, T., Chigor, V. N., Koba, S., Obi, C. L., & Okoh, A. I. (2014). Characterisation of the physicochemical qualities of a typical rural-based river: ecological and public health implications. International Journal of Environmental Science and Technology, 11, 1771-1780.
https://doi.org/10.1007/s13762-013-0376-z
[49] Papafilippaki, A. K., Kotti, M. E., & Stavroulakis, G. G. (2008). Seasonal variations in dissolved heavy metals in the Keritis River, Chania, Greece. Global nest. The international journal, 10(3), 320-325.
https://www.researchgate.net/profile/Androniki-nina-Papafilippaki/publication/243399088
[50] Evangelou, V. P. (2022). Environmental soil and water chemistry. A Wiley-Interscience Publication.
http://ngc.digitallibrary.co.in/handle/123456789/2313
[51] Suchan, J., & Azam, S. (2021). Effect of salinity on evaporation from water surface in bench-scale testing. Water, 13(15), 2067.
https://doi.org/10.3390/w13152067
[52] Majerova, M., Neilson, B. T., & Roper, B. B. (2020). Beaver dam influences on streamflow hydraulic properties and thermal regimes. Science of the Total Environment, 718, 134853.
https://doi.org/10.1016/j.scitotenv.2019.134853
[53] Poole, G. C., & Berman, C. H. (2001). An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-causedthermal degradation. Environmental management, 27, 787-802.
https://doi.org/10.1007/s002670010188
[54] Rajwa-Kuligiewicz, A., Bialik, R. J., & Rowiński, P. M. (2015). Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. Journal of Hydrology and Hydromechanics, 63(4), 353-363.
https://doi.org/10.1515/johh-2015-0041
[55] Huryn, A. D., Benstead, J. P., & Parker, S. M. (2014). Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology, 95(10), 2826-2839.
https://doi.org/10.1890/13-1963.1
[56] Hall Jr, R. O., Yackulic, C. B., Kennedy, T. A., Yard, M. D., Rosi‐Marshall, E. J., Voichick, N., & Behn, K. E. (2015). Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado river, grand canyon. Limnology and Oceanography, 60(2), 512-526.
https://doi.org/10.1002/lno.10031
[57] Demars, B. O., Gíslason, G. M., Ólafsson, J. S., Manson, J. R., Friberg, N., Hood, J. M., ... & Freitag, T. E. (2016). Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nature Geoscience, 9(10), 758-761.
https://doi.org/10.1038/ngeo2807
[58] Gnauck, A., Li, B.L., Fuego, J.D.A., Luther, B., 2010. The role of statistics for long-term ecological research. In: Muller, F., Baessler, C., Schubert, H., Klotz, S. (Eds.), Long-Term Ecological Research. Between Theory and Application, Springer-Verlag, Berlin, pp. 107–129.
https://doi.org/10.1007/978-90-481-8782-9_8