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 The climate change phenomenon has resulted in increased unpredictability 

regarding water availability in dry and semi-dry areas. This challenge affects 

not just the amount of water accessible but also intensifies worries about the 

quality of water. Water quality is impacted by climate change, specifically 

through extreme fluctuations in precipitation and temperature and, 

consequently, more runoff and evaporation rates. The warmer temperature 

and less precipitation affect water temperature as well as ecosystem health. 

It is essential to consider how changes in water temperature (Tw) and dissolved 

oxygen (DO) levels are influenced by heat exchange with the surrounding 

environment to evaluate water quality comprehensively. The primary goal of 

this research is to assess alterations in Tw and DO utilizing regression models 

within the Jarreh Dam reservoir in southwestern Iran. The findings indicated 

that air temperature had a considerable impact on Tw, as the large reservoir 

of the dam reduced the influence of other weather factors and hydraulic 

conditions on variations in Tw and DO. The accuracy of Tw estimation increased 

with longer time scales, and using logistic equations further improved this 

precision. Additionally, the effects of stage fluctuations on Tw and DO were 

minimal due to slight variations in relative water depth. Consequently, it was 

essential to consider both the direct effects of temperature and the indirect 

influences of factors like water salinity when evaluating the impacts of climate 

change on dissolved oxygen in rivers. Additionally, of the two evaluated 

chemical parameters, the electrical conductivity model was important 

because of its impact on biological activities. In large water reservoirs where 

high turbulence through modifications is unfeasible, considering chemical and 

biological parameters may be more effective for optimizing DO levels than just 

adjusting water levels. 
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1. Introduction 

The volume of withdrawn water and wastewater 

has notably increased in recent years due to rapid 

population growth, improved living standards, 

industrial development, and human activities. In 

many developing areas, excessive wastewater is 

directly discharged into surface water bodies 

without proper treatment. Moreover, agricultural 

pollutants like fertilizers and pesticides are 

continually being released into water resources. 

Additionally, the frequency of droughts has 

worsened and expedited the deterioration of water 

resource quality. This situation poses an even 

greater threat to sustainability than before. 

Various parameters, such as water temperature 

(Tw), electrical conductivity (EC), and hydrogen 

potential (pH), have been considered by experts to 

evaluate water quality [1]. Among these is 

analyzing dissolved oxygen (DO), which serves as a 

key indicator of water quality and is widely used to 

measure water quality and assess water 

contamination. It plays a vital role in characterizing 

aquatic environments, reflecting the balance 

between oxygen production and consumption in 

that environment. Predicting its concentration 

could provide valuable insights for environmental 

management. Therefore, its accurate 

measurement and prediction provide a better 

understanding of the quality of water resources, 

their proper management, and valuable insights 

for environmental management [2-4]. 

In ecosystems, DO concentration is influenced by 

both physical (e.g., temperature and turbulence) 

and biological (e.g., photosynthesis and respiration 

[5]. Managing water bodies involves a critical focus 

on tackling the decrease in DO levels. This decline 

often occurs as a result of an overabundance of 

organic matter and nutrients in the water. In rivers, 

gas exchange rates are higher than in lakes and 

estuaries despite the same biochemical processes 

governing oxygen supply and demand [6]. 

Anthropogenic activities can cause hydrological 

changes that result in hypoxia, such as the 

construction of hydroelectric dams with large 

reservoirs leading to high nutrient contents [7] and 

significant water abstraction for purposes like 

irrigation that result in reduced oxygen supply [8]. 

A decrease in DO concentration below 2 mg/L leads 

to hypoxia. In this situation, severe ecological 

destruction is inevitable [9]. The presence of 

adequate nutrients is essential for fish growth, and 

fish ponds are typically fertilized to promote 

optimal growth or to sustain endangered species in 

lakes [10]. However, the excessive presence of 

nutrients diminishes its positive effects and leads 

to eutrophication in water bodies.  

Numerous studies have confirmed the impact of Tw 

on the concentration of DO. This is primarily due to 

the impact of Tw on crucial biological processes, 

such as photosynthesis, respiration, and the 

breakdown of organic matter [11], all of which are 

pivotal factors in determining the levels of DO. As a 

result, climatic conditions, water nutrients [12], 

and atmospheric physical processes [13] exert 

indirect but substantial effects on the quantity of 

DO present in the water. Tw, in turn, is influenced 

by various meteorological factors and physical 

characteristics that impact the flow of the river, 

leading to either cooling or heating of the water. 

These factors generally result in energy exchanges 

in water over the long term, such as solar radiation, 

or over the short term, such as wind speed and air 

temperature.  

Additionally, the Tw of a river can be affected by 

coastal vegetation (riparian vegetation), the 

watercourse's geomorphology, and the region's 

topography [14]. Some anthropologic activities, 

such as the construction of dams, can exert a 

significant influence on Tw [15]. The presence or 

absence of vegetation along riverbanks can also 

impact Tw [16]. Moreover, adding or withdrawing 

water, apart from directly affecting Tw, can induce 

spatial and temporal variations in river Tw by 

influencing afforestation, deforestation, and air 

temperature [17]. 

The modeling of river DO was started about a 

hundred years ago by Streeter and Phleps (1925) 

[18]. After examining the processes of 

deoxygenation and re-aeration, they provided a 

simple equation to predict the amount of DO and 

then validated it with data from the Ohio River. 

Since then, many scientists have derived and 

introduced different equations between DO and 

river water quality. Since many factors affecting 

DO are still unknown, the equations do not have 

accurate predictions in many cases. In addition, 

many of these equations require a lot of data for 

prediction, which are sometimes unavailable, 
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unreliable, or expensive to obtain. In the pursuit of 

estimating Tw, various physical models have been 

developed over the years. These models are rooted 

in the consideration of heat fluxes and radiation 

interactions among the streambed, air, and water 

[19]. Given the complexity of measuring these 

parameters, it becomes imperative to employ 

simpler models that necessitate less input data. In 

recent years, there has been growth in the 

utilization of regression models in various 

iterations, which rely on readily available data such 

as air temperature and river flow velocity. Among 

these variables, air temperature, extensively 

monitored across different regions, has emerged as 

a particularly significant factor in the modeling 

process. 

Traditional regression models tend to have less 

accuracy in fitness compared to modern models; 

however, these regression models exhibit distinct 

strengths that have proven valuable in practical 

applications. Consequently, experts often rely on 

them and consider them the top choice for 

forecasting various parameters in environmental 

engineering [20]. The regression models 

demonstrate greater stability compared to new 

models when it comes to the quantity of input 

variables and the duration of the recorded data 

sets. In addition, because of its explicit forms, it is 

more dependable. The regression model must 

possess less training and knowledge than newer 

models. Basic regression models, taking into 

account the constraints of input variables, are the 

most widely recognized and practical models in 

applied research among the different regression 

options. However, the performance of the 

regression models was inferior compared to the 

newly developed models. To enhance the accuracy 

of these regression models, particularly the simpler 

ones, it is essential to implement various statistical 

improvement techniques. These methods will aid in 

refining the models and ultimately lead to more 

reliable results. The logistic regression models 

developed by Mohseni et al. (1998) are known for 

their simplicity and relatively high efficiency [21]. 

Despite the passage of several years, these 

equations have found applications in various fields 

such as climate change, environmental impact, 

and energy production [22]. Researchers have 

utilized the Mohseni et al. (1998) model with data 

at different time intervals [21]. For instance, 

Basarin et al. [23] used this model to estimate 

monthly data, Feng et al. [24] for daily data, 

Arismendi et al. [25] for a seven-day moving 

average, and Lubega and Steelwall [26] for a 14-

day moving average. 

In the current study, the fluctuations in Tw and DO 

levels within the Jarreh Dam reservoir located in 

southwest Iran were analyzed using regression 

models. The study also looked into how variations 

in time scale, climatic conditions, and certain 

chemical properties impacted fluctuations in both 

Tw and DO levels. 

2. Material and Methods 

2.1 Study site 

The Zard River watershed, with an area of 882.49 

square kilometers, a perimeter of 207.93 

kilometers, and a length of 8 kilometers, is located 

in the southwest of Iran and the east of Khuzestan 

province. The studied area is one of the sub-basins 

of the large Marun-Jarrahi watershed in Khuzestan 

province, which falls between 39' 49'' to 50' 38' 10' 

E longitude and 31' 22' 78'' to 52' 42 ˚ 31 N latitude 

(Figure 1). This watershed boasts a variety of urban 

areas and industrial sectors, notably petrochemical 

industries and significant agricultural fields, 

alongside dynamic aquaculture operations that are 

greatly affected by water quality levels impacting 

their output. Also, the Shadegan International 

Wetland is located at the end of this basin, and, 

therefore, the indicators examined in this study 

(water temperature and dissolved oxygen) have a 

significant impact on maintaining its appropriate 

conditions. Ultimately, this river ends up in the 

Persian Gulf, and making improvements to its 

water quality will benefit the overall environmental 

state of this aquatic environment. Therefore, 

increasing water quality in the reservoir improves 

the quality of water received downstream, thereby 

ensuring the economic and environmental 

sustainability of urban areas and water bodies. 

The land uses of the Zard River watershed include 

pasture, rainfed agriculture, gardens, and forests. 

The mountain and hill regions primarily feature 

forests and pastures, with some arid areas. In 

contrast, the plateaus and alluvial terraces mainly 

consist of irrigated and rainfed agriculture. The 

changes in land cover cause significant changes in 
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air as well as water temperature [27]. Agricultural 

lands can also be seen in river sediments and river 

banks. The geomorphology of the basin includes 

mountainous, hilly, and plain units. The study area 

has high sedimentation due to sensitive geological 

formations. Since air temperature, water 

temperature, sedimentation, and DO all affect 

each other, it is useful to consider the above-

mentioned factors when interpreting the research 

results [28]. 

Also, water quality data, including water 

temperature (Tw), dissolved oxygen (DO), water 

depth (Stage), sodium absorption ratio (SAL), 

electrical conductivity (EC), evaporation (EVP), 

wind speed (W), relative humidity (P), and inlet 

flow to the reservoir (qin), was used to model Tw 

and DO. The meteorological data used in this 

research were obtained from the Ramhormoz 

synoptic station, and the water quality data were 

obtained from the dam company, the power plant, 

and the irrigation networks of Zareh and Jarrahi in 

the statistical period of 2018 to 2022. Because this 

meteorological station has a long history of data 

collection, its data during the study period was 

almost complete. Water quality data had 

shortcomings. Nonetheless, due to a lack of proper 

calibration, outliers were evident in the water 

quality data utilized at the beginning of the study 

period. Occasionally, the failure of equipment 

caused lapses in measuring some quality 

indicators. The data were sorted, the missing data 

were checked and reconstructed, and finally, the 

resulting data were used in different models in 

daily, weekly, and monthly steps. The data 

reconstruction method was employed to address 

the deficiencies identified in the study data 

following the preparation of statistics related to 

water quality indices. The statistical characteristics 

of this data are presented in Table 1. 

2.2 Water temperature models 

Two different types of models were employed to 

predict Tw: deterministic models and regression 

models. Deterministic models rely on heat balance 

and require knowledge of thermal inputs and 

outputs, which may not be feasible in many 

locations. On the other hand, regression models 

utilize readily available data such as air 

temperature to estimate Tw and streamflow, 

making them a more accessible option as these 

data are frequently measured at various 

meteorological and hydrometric stations. The 

simplest method to express the relationship 

between Tw and other variables, based on data, is 

the linear regression model: 

𝑇𝑤 = 𝑎0 + 𝑎1𝑇𝑎 + 𝜀 (1) 

These models have been used in numerous studies 

spanning from earlier research (Caissie, 2006) to 

more recent investigations [29]. However, many 

studies do not consider lag due to the linearity of 

the relationship; some researchers have examined 

a lag range between 0 and 29 days [22] . 

 
Fig. 1. Location of the study area. 
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Table 1. Minimum, mean, and maximum of the utilized data in the study. 

  Min Mean Max 

Ta Daily 5.4 45.4 27.83 

Weekly 19.14 36.77 27.78 

Monthly 24.39 30.82 27.87 

Tw Daily 2.58 31.33 19.48 

Weekly 18.33 28.19 23.34 

Monthly 21.9 25.33 23.39 

DO Daily 2.58 5.66 4.11 

Weekly 3.39 4.66 4.11 

Monthly 3.88 4.35 4.11 

Stage Daily 69.13 93.02 79.11 

Weekly 73.49 85.21 79.35 

Monthly 76.56 88.74 79.33 

SAR Daily 0.5 9 0.82 

Weekly 0.64 2.42 0.82 

Monthly 0.73 1.18 0.82 

EC Daily 1790 1710 1527 

Weekly 1319.4 1669.3 1532 

Monthly 1466 1628 1534 

Evaporation Daily 0.7 9.05 28.4 

Weekly 3.5 9.04 14.82 

Monthly 6.90 9.06 10.76 

Wind Speed Daily 1 4.6 7.14 

Weekly 3 4.50 6.48 

Monthly 3.5 4.48 5.4 

Relative Humidity Daily 6.37 37.28 98.37 

Weekly 19.88 37.27 62.06 

Monthly 29.44 37.46 43.61 

Inlet Flowrate Daily 0 5.23 90.17 

Weekly 1.23 5.21 29.71 

Monthly 1.99 5.18 10.65 

However, it may be a good estimate of the linear 

regression temperatures. In extreme temperatures, the 

linear regression is less efficient. At low temperatures, 

the presence of ice cover prevents heat exchange; at high 

temperatures, the presence of water vapor acts as a 

radiation reflector and prevents water from heating. In 

both situations, the influence of Tw on air temperature 

changes decreases [30]. To solve this problem, Mohseni 

et al. [21] introduced and tested a non-linear regression 

relationship in weekly time steps. This relationship was 

widely used and modified in the following years 

[22,31].Mohseni et al. [21] presented the following 

relationship to increase the accuracy of Tw estimation: 

𝑇𝑤 =
𝛼

1 + 𝑒𝛾(𝛽−𝑇𝑎)
 (2) 

In this regard, 𝑇𝑤is the water temperature, 𝑇𝑎 is the 

air temperature, α is the estimator coefficient of 

the maximum Tw, β is the air temperature at the 

infllection point, and γ is the steepest slope of the 

logistic function. Microsoft Excel solver was used to 

determine the coefficients. Taking into account 

that the studied river does not freeze, the relation 

(2) can be modified by adding a coefficient μ that 

estimates the minimum Tw as follows : 

𝑇𝑤 = 𝜇 +
𝛼 − 𝜇

1 + 𝑒𝛾(𝛽−𝑇𝑎)
 (3) 

The influence of air temperature on Tw is 

significant, with other meteorological parameters 

and streamflow also playing a crucial role. Past 

studies have indicated that incorporating 

streamflow using multiple regression does not 

necessarily yield superior results compared to 

logistic and linear models. In a specific research 

context, due to the challenges associated with 

determining streamflow in the reservoir of the 

dam, flow depth is utilized as a substitute for 

streamflow in the multiple regression equation. 

𝑇𝑤 = 𝑎0 + 𝑎1𝑇𝑎 + 𝑎2𝑆𝑇 + 𝜀 (4) 

where ST is the stage level corresponding to the Tw. 
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2.3 Regression models of DO 

The simplest model for determining DO using Tw is 

linear regression and is as follows : 

𝐷𝑂 = 𝑎0 + 𝑎1𝑇𝑤 + 𝜀 (5) 

Harvey et al. [32] tested an exponential regression 

to model DO using Tw in several rivers in 

Newfoundland and Labrador. In their research, this 

equation, as follows, has been investigated : 

𝐷𝑂 = 𝑒(𝑎0+𝑏1𝑇𝑤) (6) 

Also, multiple regression was used to study the 

effect of considering SL to improve DO estimation. 

Its relationship is presented as follows : 

𝐷𝑂 = 𝑎0 + 𝑎1𝑇𝑤 + 𝑆𝐿 + 𝜀 (7) 

2.4 Statistical evaluation 

The normalized root mean squared error (NRMSE) 

and MAE (Mean Absolute Error) were used to 

compare the accuracy of the relationships used in 

the estimation of DO in Jarreh Dam water. Any 

model that has less amounts of the two mentioned 

measures is more accurate than other models. The 

following equations describe the method of 

determining the mentioned indicators : 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑛
√

∑ (𝑂𝑖 − 𝑃𝑖)2𝑛
𝑖=1

𝑛
 (8) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|

𝑛

𝑖=1
 (9) 

where 𝑂𝑖 and 𝑃𝑖 are the observed and predicted 

value of Tw or DO, respectively, and 𝑂̅𝑖 and 𝑃̅𝑖 are 

the mean observed and predicted of Tw or DO, 

respectively. 

2.5 Study of factors affecting citric acid production 

Citric acid production was compared at different 

factors: various concentrations of nitrogen source 

(ammonium nitrate (AN) 0.5, 1.0, 1.5%), a carbon 

source (sucrose and molasses 15,15%), and an 

alcohol source (methanol 1.0, 2%). All of the 

experiments were done in duplicate with A.niger 

and A.tubingensis. 

3. Result and discussion 

Over the course of different years, the variations in 

DO levels showed a nearly identical pattern. 

Nevertheless, these patterns were not entirely the 

same. Previous researchers, namely Post et al. [33] 

and Hu et al. [34] have documented the presence 

of a pattern in the seasonal variations of Tw and 

DO (Figure 2. (top)). In December and January, DO 

levels were at their highest, whereas July and 

August saw the lowest amounts. The fluctuations 

in Tw showed a consistent seasonal trend across 

various years (Figure 2. (middle)). In comparison, 

the fluctuations in Tw followed a more predictable 

seasonal pattern than those observed in DO levels. 

Contrarily, its highest point was seen during the 

period from July to September, while its lowest 

point occurred in December. Due to the fact that 

maximizing DO levels relies on minimizing Tw, it 

follows naturally that the peaks in temperature 

and DO occur approximately 6 months apart. 

Rajesh and Rehana [35]  noticed an identical trend 

in various locations throughout the Ganges River 

valley. A significant factor in this phenomenon is 

the decline in gas solubility as temperatures rise 

[36]. Jane et al. [37] mentioned that external 

factors could impact this process in either a 

negative or positive way. 

In this study, the stage changes had a seasonal 

pattern almost similar to the changes in DO 

concentration (Figure 2. (below)). Despite being 

distinct each year, the pattern demonstrated a 

notable increase in alterations during the initial 

period while showing lesser shifts in subsequent 

years. Overall, alterations in this stage did not have 

a notable impact on fluctuations in Tw and DO 

levels. Therefore, it seems that investigating the 

effectiveness of annual changes in ST with DO 

requires data for a longer period of time. 

3.1 Water temperature modeling 

The solver in Microsoft Excel was employed to 

determine the parameters of the Tw models. The 

two goodness-of-fit measures of MAE (Mean 

Absolute Error) and NRMSE (normalized root mean 

squared error) were used to assess the precision of 

the applied models. The results of modeling during 

calibration and verification are shown in Table 2 for 

daily, weekly, and monthly periods. The difference 

between the linear model and the first and second 

logistic models was found to be insignificant. Upon 

comparing the three models, it was evident that 

the second logistic model produced superior results 

compared to the other two. By investigating 43 
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rivers spanning 13 countries, it is determined that 

the implementation of nonlinear regression 

resulted in more accurate predictions of Tw using 

air temperature as a variable [38]. In addition to 

this, Al-Jashaami and Al-Zubaidi [39] observed 

that the nonlinear logistic function proved to be 

accurate in determining the Tw of Laurance Lake, 

Oregon. Nevertheless, they asserted that variations 

in time did not impact the precision of the resulting 

model. In contrast, the findings of the current 

study were in contrast to those found in Harvey’s 

research [40]. Perhaps the reason for this variation 

lies in the freezing temperatures present in the 

rivers they analyzed compared to the absence of 

such conditions in the river under investigation. 

Indeed, factoring in the minimum temperature as 

the μ parameter in rivers with temperatures 

exceeding freezing could lead to improved 

prediction accuracy. In addition, at high and low 

temperatures, using the logistic model improves 

the accuracy of the equation compared to the 

linear model [40]. 

If the response variable is categorical, opting for 

logistic regression instead of linear regression is 

more favorable due to the absence of restrictions. 

The superiority of the logistic regression model over 

the linear regression model lies in its ability to make 

predictions as probabilities between 0 and 1 

without the constraints of normal distribution 

assumptions. While the linear regression model 

forecasts values across the spectrum from negative 

to positive infinity, this approach is not suitable for 

predicting categorical variables. The logistic 

regression model is an altered form of linear 

regression that estimates the likelihood of the 

output variable based on a linear combination of 

input variables. However, the logistic regression 

model may have limitations in estimating DO or Tw 

values. Generally, the accuracy of predictions 

made by this model is relatively high, especially in 

cases where there is a linear relationship between 

response and explanatory variables [41]. 

 

Table 2. Comparison of results of applying different Tw models.  

Verification Calibration Time Scale Model 

MAE NRMSE MAE NRMSE 

2.12 6.9 1.99 6.7 Daily 𝑇𝑤 = 9.33 − 0.50 × 𝑇𝑎 

0.86 4.4 0.68 4.0 Weekly 𝑇𝑤 = 10.12 − 0.48 × 𝑇𝑎 

0.52 3.3 0.36 2.9 Monthly 𝑇𝑤 = 10.19 − 0.47 × 𝑇𝑎 

2.38 7.1 2.23 6.9 Daily 𝑇𝑤 =
33.46

1 + 𝑒0.06(13.95−𝑇𝑎)
 

0.92 4.5 0.71 4.1 Weekly 
𝑇𝑤 =

33.85

1 + 𝑒0.06(14.42−𝑇𝑎)
 

0.51 3.3 0.39 3.0 Monthly 𝑇𝑤 =
32.86

1 + 𝑒0.07(14.95−𝑇𝑎)
 

2.00 4.8 1.87 6.6 Daily 𝑇𝑤 = 15.77 +
31.48 − 15.77

1 + 𝑒0.17(28.68−𝑇𝑎)
 

0.83 4.3 0.71 4.1 Weekly 𝑇𝑤 = 18.28 +
28.31 − 18.28

1 + 𝑒0.22(27.60−𝑇𝑎)
 

0.55 3.4 0.37 3.0 Monthly 𝑇𝑤 = 20.29 +
34.48 − 20.29

1 + 𝑒0.20(34.62−𝑇𝑎)
 

2.02 6.7 1.98 6.7 Daily 𝑇𝑤 = 8.72 + 0.55 × 𝑇𝑎 − 0.08 × 𝑆𝑇 

0.49 3.2 0.38 2.92 Weekly 𝑇𝑤 = 6.92 + 0.76 × 𝑇𝑎 − 0.05 × 𝑆𝑇 

0.83 4.28 0.68 4.0 Monthly 𝑇𝑤 = 9.67 + 0.51 × 𝑇𝑎 − 0.06 × 𝑆𝑇 
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 Fig. 2. Variations of DO (top), air and Tw (middle) and Stage (below) from 2018-2022. 
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In different stations, Tw was measured in various 

time scales. These intervals ranged from a few 

minutes to monthly or even seasonal. However, this 

data may not be measured in many small or 

seasonal streams [42]. Similar to Erickson and 

Stefan [43], choosing different time scales resulted 

in different line slopes and intercepts. Moreover, 

the findings demonstrated that estimates in both 

linear and non-linear models became more 

accurate as the time scale increased. Moving from 

a weekly to a monthly scale showed a significant 

increase in accuracy compared to moving from a 

daily to a weekly. This could be attributed to the 

greater variability in daily data as compared to the 

more consistent patterns observed in weekly and 

monthly data. Moreover, despite the potential of 

linear models to provide improved predictions at 

weekly and daily intervals, in extreme cases, non-

linear relationships yield more accurate estimates 

[44]. Some previous studies have noted that 

stochastic models are better suited for predicting 

Tw in the short term, whereas regression models 

are more successful over extended periods [45]. 

Moreover, despite the stage not showing a 

significant effect on predicting Tw, its presence in 

the model did not increase the accuracy of 

estimation. The primary cause was the minor 

fluctuations in water levels when compared to the 

water depths observed in this study. This was 

similar to the findings of Harvey et al. [32]. 

However, in contrast to the present research, the 

relative depth changes were higher in the study 

mentioned above. 

3.2 Effects of the climatological and chemical 

factors on water temperature 

Besides air temperature, factors such as relative 

humidity and wind speed, as well as the presence 

of plant canopies, are also significant in 

determining the heat flux and consequent Tw 

fluctuations. With little vegetation present near 

the dam lake throughout multiple seasons, the 

canopy size is minimal, and its effect is 

insignificant. In this research, meteorological 

parameters such as relative humidity, wind speed, 

and evaporation had no significant effect on Tw 

(Table 3). In fact, the large volume of the reservoir 

and, as a result, its great depth has resulted in a 

low impact of meteorological parameters. 

Conversely, scientific proof indicates that the 

reservoir lake works efficiently to balance 

temperatures by cooling hot summer air and 

heating cold winter air [46,47]. 

Two other parameters investigated were the SAR 

(sodium available ratio) and EC (electrical 

conductivity) of water. No significant relationship 

between the SAR and Tw was observed. However, 

increasing water salinity caused an increase in Tw. 

This indicates that the dissolution of solids is a 

temperature-dependent process. The difference 

observed between EC and SAR results is probably 

due to the fact that the elements affecting the SAR 

constituted a small fraction of the dissolved solids 

in the water. Sibanda et al. [48] also reported a 

weak positive correlation between EC and Tw 

(r=0.15).

Table 3. Comparison of the results of utilizing different meteorological and chemical parameters in modeling Tw. 

MAE NRMSE E Model 

0.68 4.0 NS 𝑇𝑤 = 9.66 + 0.48 × 𝑇𝑎 + 0.37 × 𝑆𝐴𝑅 

0.67 4.0 0.011 𝑇𝑤 = 6 + 0.48 × 𝑇𝑎 + 0.002 × 𝐸𝐶 

0.68 4.0 NS 𝑇𝑤 = 9.67 + 0.51 × 𝑇𝑎 − 0.06 × 𝐸𝑉𝑃 

0.68 4.0 NS 𝑇𝑤 = 10.42 + 0.47 × 𝑇𝑎 − 0.07 × 𝑊 

0.68 4.0 NS 𝑇𝑤 = 8.71 + 0.5 × 𝑇𝑎 + 0.016 × 𝐻 

0.68 4.0 NS 𝑇𝑤 = 10.08 + 0.47 × 𝑇𝑎 + 0.003 × 𝑞𝑖𝑛 

Similarly, the effect of EC was not high either. In a 

similar study, Papafilippaki et al. [49] also 

observed a positive relationship between water 

temperature and heavy metal concentrations. 

However, they did not observe a correlation 

between EC and heavy metal concentrations. 

According to the diffuse layer double theory [50], 

increasing the SAR increases turbidity and thus 

reduces light penetration in the water, which can 

affect water temperature. However, increasing 
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salinity can increase flocculation, light 

penetration, growth of aquatic plants, and 

temperature by compressing the double diffuse 

layer. Aquatic organisms may be at risk from high 

EC levels as they can lead to increased salinity levels 

in the water and potential suffocation of the 

stream bottom, particularly in deep waters [48]. 

Increased salinity levels can potentially cause a rise 

in Tw, affecting the growth and metabolic 

processes of aquatic organisms. However, under 

conditions where temperatures do not reach 

freezing points, the correlation between salinity 

levels and increasing temperatures can be 

attributed to the effect of evaporation on the ion 

concentration [51]. 

Investigating the role of inlet flow, researchers 

explored its effects on heat exchange. The heat flux 

behavior in relation to flow properties is subject to 

change based on variations in volume to surface 

ratio and flow velocity. By constructing dams, the 

impact of heat exchange due to flow is lessened 

through the creation of reservoirs and reduced flow 

velocity [52]. Within this study, it was observed 

that there was an insignificant relation between 

the inlet flowrate and Tw as a result of the minimal 

volume of the flowrate in comparison to the large 

volume of water in the reservoir. In general, human 

activities involving building structures such as 

dams can potentially affect Tw, river flow systems, 

or both [53]. 

3.3 Modeling of DO variations 

The primary objective of our research was to assess 

how DO and Tw change over different time scales 

in order to identify the optimal regression equation. 

DO changes during the studied period are shown in 

Figure (1-top). Even though there was a 

proportional trend between DO changes and both 

Tw and air temperature, the variability in DO 

changes was greater than that of Tw. Despite the 

correlation between the DO changes and Tw and air 

temperature trends, variability in DO levels could 

be attributed to additional factors, resulting in a 

less predictable pattern than that of Tw. The results 

showed that maximum DO occur at minimum 

temperatures in the winter, which is the rainy 

season. This was in contrast to rivers with snow 

basins, whose minimum Tws occurred during the 

snowmelt season, early spring. Typically, factors 

like rainfall, variations in water flowrate, and snow 

melting can lead to a substantial increase in DO 

levels when entering the mainstream [54]. The 

minimal rainfall and lack of snow in the basin, 

combined with a low inflow-to-reservoir volume 

ratio, indicated temperature fluctuations as the 

cause of DO changes. 

During the transition from winter to summer, the 

DO concentration tended to decrease. 

Consequently, the fluctuations in DO also 

decreased due to reduced activity of aquatic 

organisms. Conversely, as summer transitions to 

the next season, the biological activity of aquatic 

organisms increases, leading to elevated 

fluctuations in DO concentration. Processes like 

photosynthesis, respiration, and mineralization of 

organic material enhanced the DO levels in water 

with low flowrates [21]. An increase in biological 

activities alongside the reservoir’s stagnation led to 

conditions similar to hypoxia [54]. In the Jarreh 

Reservoir Dam environment, characterized by 

minimal biological activity, particularly 

constrained rates of photosynthesis, fluctuations 

in DO concentrations were primarily influenced by 

seasonal temperature variations. Nevertheless, 

other variables could influence these fluctuations 

and need further investigation. Even though it can 

be complex to separate the effects of temperature 

and light in natural rivers [55], controlled rivers, 

such as dam reservoirs, frequently alter the 

thermal patterns on their own regardless of light 

access, making it possible to measure the 

significance of temperature [56]. One of the recent 

researches revealed that within the temperature 

range of 4-45oC, ecosystem-level photosynthesis 

displayed an exponential increase in correlation 

with temperature [57]. 

The comparison between linear and exponential 

equations showed that the accuracy of these 

relationships was close to each other. However, the 

exponential relationship performed slightly better 

in daily estimation. Also, similar to previous 

research, due to the variability of DO, the time 

scale had an effect on it, and the accuracy of the 

estimates increased as the time scale became 

larger. In alignment with past studies, the 

fluctuation of DO was influenced by the length of 

time considered, leading to a higher accuracy in 

estimates as the time scale expands (Table 4). 

Gnauk et al. [58] concluded that on large time 
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scales (more than a week), drastic changes in DO 

concentration due to temperature changes cannot 

be recorded by conventional measurement 

systems. Moreover, considering the stage did not 

help the accuracy of the DO estimation. Small 

relative flowrates (small relative stages) affected 

both Tw and DO [33]. Given the minimal 

fluctuations in water depth within the reservoir at 

various time periods, it proved impossible to alter 

the concentrations of DO. Nevertheless, it appears 

that the stage has a substantial impact on 

temperature and DO changes in rivers with shallow 

depths. Nonetheless, further studies need to be 

conducted in order to assess the threshold of 

influence of stage on DO concentration. In 

addition, similarly to both linear and exponential 

equations, the precision of the estimations by 

Equation 5 also improved as the time scale 

increased.  

The division of the data into cold and warm seasons 

revealed that DO levels decreased as Tw rose in 

both groups (Figure 3,4). The decrease in DO levels 

was more severe during the warm season despite 

both seasons experiencing equal changes in Tw. 

Consequently, these adjustments were probably 

the result of a different factor rather than changes 

in Tw. Changes in DO levels between seasons were 

possibly due to fluctuating stages caused by 

shallower water depths in the summer. As per 

projections of climate change, there will likely be a 

rise in future air temperatures and Tw. 

Consequently, there will be a marked reduction in 

the dissolved oxygen content of the water due to 

the increase in temperature. Moreover, as a result 

of the slight fluctuations in water depth and the 

dearth of water circulation within dam reservoirs, 

increasing dissolved oxygen to a significant extent 

is not achievable. Unlike rivers, changes in dam 

reservoir levels won’t bring about an increase in 

dissolved oxygen content, while purposely 

fluctuating for this reason may result in a notable 

loss of stored water. However, this may be done 

periodically to drain sediments from the reservoir. 

Among climatic factors, air temperature exerts the 

most significant influence on fluctuations in water 

temperature. Consequently, any factor that results 

in a decrease in air temperature will also result in a 

corresponding reduction in water temperature. 

Improving vegetation cover by implementing 

strategies such as afforestation and conservation 

measures can help stabilize temperatures in a 

sustainable manner.

Table 4. Comparison of results of applying different DO models.  

Verification Calibration Time Scale Model 

MAE NRMSE MAE NRMSE 

0.40 17.0 0.41 17.5 Daily 𝐷𝑂 = 5.81 − 0.072 × 𝑇𝑤 

0.16 10.8 0.15 10.7 Weekly 𝐷𝑂 = 6.05 − 0.080 × 𝑇𝑤 

0.09 8.3 0.07 7.1 Monthly 𝐷𝑂 = 5.87 − 0.070 × 𝑇𝑤 

0.40 17.0 0.42 14.8 Daily 𝐷𝑂 = 𝑒𝑥𝑝 [1.81 − 0.017 × 𝑇𝑤] 

0.16 10.8 0.15 10.8 Weekly 𝐷𝑂 = 𝑒𝑥𝑝 [1.88 − 0.020 × 𝑇𝑤] 

0.09 8.2 0.07 7.1 Monthly 𝐷𝑂 = 𝑒𝑥𝑝 [1.84 − 0.018 × 𝑇𝑤] 

0.50 19.0 0.54 20.1 Daily 𝐷𝑂 = 0.065 − 0.047 × 𝑇𝑤 + 𝑆𝑇 

0.19 12.1 0.21 12.3 Weekly 𝐷𝑂 = 0.069 − 0.060 × 𝑇𝑤 + 𝑆𝑇 

0.12 9.9 0.10 8.7 Monthly 𝐷𝑂 = 0.053 − 0.006 × 𝑇𝑤 + 𝑆𝑇 



 N. Anbarpour et al. / Advances in Environmental Technology 11(2) 2025, 220-235. 

 

231 

231 

 

 

Fig. 3. Daily mean dissolved oxygen in the cooling season fit with a linear regression. DO= 5.67-0.07 (Tw) and 

exponential regression DO = exp (1.79-0.017(Tw)). 

 
Fig. 4. Daily mean dissolved oxygen in the warming season fit with a linear regression. DO= 7.46-0.13 (Tw) and 

exponential regression DO = exp (2.19-0.031(Tw)). 

4. Conclusions 

The Tw has both a direct and indirect impact on the 

quality of the water and its ecological indicators, 

such as the concentration of DO. Studying 

variations in both the DO levels and Tw, in 

conjunction with meteorological and chemical 

water parameters, is essential for establishing a 

comprehensive scientific understanding of the 

dynamics of natural DO in river systems. The study 

findings indicated that the DO levels in the river 

reservoir Jarreh Dam were not impacted by flow 

and hydraulic conditions but were influenced by 

temperature variations resulting from seasonal 

changes. In addition, extending the time scale 

correlated directly with enhancing the accuracy of 

Tw estimation equations. Overall, because of the 

reservoir’s conditions and minor water level 

changes, there was no notable impact on Tw from 

climatic factors. Because of its impact on 

biological functions, the rise in electrical 

conductivity had a direct correlation with 

temperature. In arid regions, numerous rivers still 

lack sufficient data for accurately modeling Tw and 

DO. Gaining a more comprehensive understanding 

of the factors influencing the fluctuations of these 

indicators necessitates conducting more thorough 

and detailed studies. 
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