Impact of TiO2 and CaCO3 nanoparticles and their incorporation in polysulfone composite membrane on photocatalytic degradation of RB 5

Document Type : Research Paper

Authors

1 National Institute of Technology Karnataka

2 Department of Post Graduation studies in Organic Chemistry, Alva’s college, Moodubidire 574 227, Karnataka, India

3 Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India

Abstract

Contamination of water resources by dyes is a potential peril to humans and the ecosystem. Photocatalytic decomposition is one of the efficient ways to remove hazardous dyes present in water. CaCO3 and TiO2 nanoparticles have been synthesized from calcium chloride and sodium carbonate using a precipitation method and sol-gel technique, respectively. Synthesized CaCO3 and TiO2 nanoparticles were analysed using X-ray diffraction (XRD), ultraviolet visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The experimental results showed that the synthesized CaCO3 nanoparticles were of calcite and the TiO2 nanoparticles of anatase. Polysulfone (PSF) composite membranes embedded with CaCO3 and TiO2 nanoparticles were prepared systematically. These synthesized nanoparticles and their embedded PSF membranes were effectively utilized for the photocatalytic decomposition of the reactive black 5 (RB 5) dye. 88.8% and 23.6% degradation of RB 5 dye was observed for TiO2 and CaCO3 nanoparticles, respectively. However, it was observed that the TiO2 and CaCO3 nanoparticle incorporated PSF membranes showed a lower photodegradation of 60.4% and 18.37%, respectively, due to the masking of the nanoparticles by the polymer matrix. The direct usage of the nanoparticles showed improved photodegradation properties.

Graphical Abstract

Impact of TiO2 and CaCO3 nanoparticles and their incorporation in polysulfone composite membrane on photocatalytic degradation of RB 5

Keywords

Main Subjects


[1]          Teng, T. T., & Low, L. W. (2012). Removal of Dyes and Pigments from Industrial Effluents. In S. K. Sharma & R. Sanghi (Eds.), Advances in Water Treatment and Pollution Prevention (pp. 65–93). Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-007-4204-8_4
[2]          Hebbar, R. S., Isloor, A. M., Inamuddin, Abdullah, Mohd. S., Ismail, A. F., & Asiri, A. M. (2018). Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. Journal of the Taiwan Institute of Chemical Engineers, 93, 42–53.
https://doi.org/10.1016/j.jtice.2018.07.032
[3]          Satishkumar, P., Isloor, A. M., Rao, L. N., & Farnood, R. (2024). Fabrication of 2D Vanadium MXene Polyphenylsulfone Ultrafiltration Membrane for Enhancing the Water Flux and for Effective Separation of Humic Acid and Dyes from Wastewater. ACS Omega.
https://doi.org/10.1021/acsomega.3c10078
[4]          Ikram, M., Raza, A., Imran, M., Ul-Hamid, A., Shahbaz, A., & Ali, S. (2020). Hydrothermal Synthesis of Silver Decorated Reduced Graphene Oxide (rGO) Nanoflakes with Effective Photocatalytic Activity for Wastewater Treatment. Nanoscale Research Letters, 15(1), 95.
https://doi.org/10.1186/s11671-020-03323-y
[5]          Elbakry, S., Ali, M. E. A., Abouelfadl, M., Badway, N. A., & Salam, K. M. M. (2022). Photocatalytic degradation of organic compounds by TFC membranes functionalized with Ag/rGO nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 430, 113957.
https://doi.org/10.1016/j.jphotochem.2022.113957
[6]          Neppolian, B., Sakthivel, S., Arabindoo, B., Palanichamy, M., & Murugesan, V. (1999). Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts. Journal of Environmental Science and Health, Part A, 34(9), 1829–1838.
https://doi.org/10.1080/10934529909376931
[7]          Pelizzetti, E., Minero, C., Borgarello, E., Tinucci, L., & Serpone, N. (1993). Photocatalytic activity and selectivity of titania colloids and particles prepared by the sol-gel technique: photooxidation of phenol and atrazine. Langmuir, 9(11), 2995–3001.
https://doi.org/10.1021/la00035a043
[8]          Ollis, D. F. (2000). Photocatalytic purification and remediation of contaminated air and water. Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry, 3(6), 405–411.
https://doi.org/10.1016/S1387-1609(00)01169-5
[9]          Bahnemann, D., Cunningham, J., Fox, M. A., Pelizzetti, E., Pichat, P., & Serpone, N. (1994). Photocatalytic Treatment of Waters. In Aquatic and Surface Photochemistry. CRC Press.
[10]        Kostedt, Ismail, A. A., & Mazyck, D. W. (2008). Impact of Heat Treatment and Composition of ZnO−TiO2 Nanoparticles for Photocatalytic Oxidation of an Azo Dye. Industrial & Engineering Chemistry Research, 47(5), 1483–1487.
https://doi.org/10.1021/ie071255p
[11]        Mehta, M., Sharma, M., Pathania, K., Jena, P. K., & Bhushan, I. (2021). Degradation of synthetic dyes using nanoparticles: a mini-review. Environmental Science and Pollution Research, 28(36), 49434–49446.
https://doi.org/10.1007/s11356-021-15470-5
[12]        Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., & Grätzel, M. (1997). Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society, 80(12), 3157–3171.
https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
[13]        Monticone, S., Tufeu, R., Kanaev, A. V., Scolan, E., & Sanchez, C. (2000). Quantum size effect in TiO2 nanoparticles: does it exist? Applied Surface Science, 162–163, 565–570.
https://doi.org/10.1016/S0169-4332(00)00251-8
[14]        Boujday, S., Wünsch, F., Portes, P., Bocquet, J.-F., & Colbeau-Justin, C. (2004). Photocatalytic and electronic properties of TiO2 powders elaborated by sol–gel route and supercritical drying. Special issue dedicated to Prof. Dr. H. Tributsch on the occasion of his 60th birthday, 83(4), 421–433.
https://doi.org/10.1016/j.solmat.2004.02.035
[15]        Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1), 33–177.
https://doi.org/10.1016/j.progsolidstchem.2004.08.001
[16]        Ruiz, A. M., Sakai, G., Cornet, A., Shimanoe, K., Morante, J. R., & Yamazoe, N. (2004). Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors. The 17th Euopean Conference on Solid-State Transducers, University of Minho, Guimares, Portugal, September 21-24, 2003, 103(1), 312–317.
https://doi.org/10.1016/j.snb.2004.04.061
[17]        Fadia, P., Tyagi, S., Bhagat, S., Nair, A., Panchal, P., Dave, H., Singh, S. (2021). Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech, 11(11), 457.
https://doi.org/10.1007/s13205-021-02995-2
[18]        Jeyasubramanian, K., & Muthuselvi, M. (2020). Photocatalytic Degradation of Methyl Violet Dye Using Calcium Carbonate Nanoparticles Synthesized by Precipitation Method. Chettinad Health City Medical Journal, 9(1).
https://doi.org/10.36503/chcmj9(1)-02
[19]        Satishkumar, P., Isloor, A. M., & Farnood, R. (2023). Expansive Applications of Chitosan and Its Derivatives in Membrane Technology. In Handbook of Membrane Separations (3rd ed.). CRC Press.
[20]        Syed Ibrahim, G. P., Isloor, A. M., Ismail, A. F., & Farnood, R. (2020). One-step synthesis of zwitterionic graphene oxide nanohybrid: Application to polysulfone tight ultrafiltration hollow fiber membrane. Scientific Reports, 10(1), 6880.
https://doi.org/10.1038/s41598-020-63356-2
[21]        Bai, Chengling.,  Gu, Zhengyang., Ping Li, Ping., Ning, Rongsheng., & Yu, Shuili. (2024). A novel salt-swelling nanofiltration membranes for drinking water purification: High mineral ions passage and efficient organic removal. (2024). Journal of the Taiwan Institute of Chemical Engineers, 159, 105473.
https://doi.org/10.1016/j.jtice.2024.105473
[22]        Isloor, A. M., Nayak, M. C., Inamuddin, Prabhu, B., Ismail, N., Ismail, A. F., & Asiri, A. M. (2019). Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: Fabrication, characterization and toxic dyes removal from aqueous solutions. Reactive and Functional Polymers, 139, 170–180.
https://doi.org/10.1016/j.reactfunctpolym.2019.02.015
[23]        Pereira, V. R., Isloor, A. M., Bhat, U. K., & Ismail, A. F. (2014). Preparation and antifouling properties of PVDF ultrafiltration membranes with polyaniline (PANI) nanofibers and hydrolysed PSMA (H-PSMA) as additives. Desalination, 351, 220–227.
https://doi.org/10.1016/j.desal.2014.08.002
[24]        Zaman, N. K., Rohani, R., Mohammad, A. W., & Isloor, A. M. (2018). Polyimide-graphene oxide nanofiltration membrane: Characterizations and application in enhanced high concentration salt removal. Chemical Engineering Science, 177, 218–233.
https://doi.org/10.1016/j.ces.2017.11.034
[25]        Ibrahim, G. P. S., Isloor, A. M., Inamuddin, Asiri, A. M., Ismail, A. F., Kumar, R., & Ahamed, M. I. (2018). Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chemical Engineering Journal, 353, 425–435.
https://doi.org/10.1016/j.cej.2018.07.098
[26]        Satishkumar, P., Isloor, A. M., & Farnood, R. (2023). Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells. In Proton Exchange Membrane Fuel Cells (pp. 73–110). John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781119829553.ch5
[27]        Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., & Ahmed, A. A. (2013). Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316, 76–84.
https://doi.org/10.1016/j.desal.2013.01.032
[28]        Nair, A. K., Isloor, A. M., Kumar, R., & Ismail, A. F. (2013). Antifouling and performance enhancement of polysulfone ultrafiltration membranes using CaCO3 nanoparticles. Desalination, 322, 69–75.
https://doi.org/10.1016/j.desal.2013.04.031
[29]        One-step synthesis of freestanding and translucent ZrO2 nanotube membranes by direct electrochemical anodization. (2024). Materials Letters, 368, 136635.
https://doi.org/10.1016/j.matlet.2024.136635
[30]        Fabrication and oil-water separation properties of cerium oxide coated zirconium oxide composite membranes. (2024). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, 133069.
https://doi.org/10.1016/j.colsurfa.2023.133069
[31]        Ibrahim, G. P. S., Isloor, A. M., Inamuddin, Asiri, A. M., & Farnood, R. (2020). Tuning the surface properties of Fe3O4 by zwitterionic sulfobetaine: application to antifouling and dye removal membrane. International Journal of Environmental Science and Technology, 17(9), 4047–4060.
https://doi.org/10.1007/s13762-020-02730-z
[32]        Bünger, L., Kurtz, T., Garbev, K., Stemmermann, P., & Stapf, D. (2024, June 7). Mixed Matrix Organo-Silica-Hydrotalcite Membrane for CO2 Separation Part 2: Permeation and Selectivity Study. Preprints.
https://doi.org/10.20944/preprints202406.0360.v1
[33]        Fabrication of mesoporous TiO2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes. (2021). Journal of Environmental Chemical Engineering, 9(4), 105776.
https://doi.org/10.1016/j.jece.2021.105776
[34]        Tahiri Alaoui, O., Nguyen, Q. T., Mbareck, C., & Rhlalou, T. (2009). Elaboration and study of poly(vinylidene fluoride)–anatase TiO2 composite membranes in photocatalytic degradation of dyes. Applied Catalysis A: General, 358(1), 13–20.
https://doi.org/10.1016/j.apcata.2009.01.032
[35]        Gnanaprakasam, A., Sivakumar, V. M., Sivayogavalli, P. L., & Thirumarimurugan, M. (2015). Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes. Green Technologies for Environmental Pollution Control and Prevention (Part 1), 121, 121–125.
https://doi.org/10.1016/j.ecoenv.2015.04.043
[36]        Poulios, I., & Tsachpinis, I. (1999). Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology & Biotechnology, 74(4), 349–357.
https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7