[1] McGee, M. A. (1980). Effluent ponds construction. Farm production and practice-Ministry of Agriculture and Fisheries, Economics Division.
[2] Moir, S. E., Svoboda, I., Sym, G., Clark, J., McGechan, M. B., Castle, K. (2005). An experimental plant for testing methods of treating dilute farm effluents and dirty water. Biosystems Engineering, 90(3), 349-355.
https://doi.org/10.1016/j.biosystemseng.2004.11.003
[3] Munavalli, G. R., Saler, P. S. (2009). Treatment of dairy wastewater by water hyacinth. Water Science and Technology, 59(4), 713-722. https://doi.org/10.2166/wst.2009.008
[4] Nyquist, J., Greger, M. (2009). A field study of constructed wetlands for preventing and treating acid mine drainage. Ecological Engineering, 35(5), 630-642.
https://doi.org/10.1016/j.ecoleng.2008.10.018
[5] Kadlec, R. H., Zmarthie, L. A. (2010). Wetland treatment of leachate from a closed landfill. Ecological Engineering, 36(7), 946-957. https://doi.org/10.1016/j.ecoleng.2010.04.013
[6] Korkusuz, E. A., Beklioğlu, M., Demirer, G. N. (2005). Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecological Engineering, 24(3), 185-198.
https://doi.org/10.1016/j.ecoleng.2004.10.002
[7] Serrano, L., De la Varga, D., Ruiz, I., Soto, M. (2011). Winery wastewater treatment in a hybrid constructed wetland. Ecological Engineering, 37(5), 744-753. https://doi.org/10.1016/j.ecoleng.2010.06.038
[8] Scholz, M., 2011. Wetland systems: storm water management control. Springer Science and Business Media.London.
[9] Stefanakis, A., Akratos, C. S., Tsihrintzis, V. A. (2014). Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment. Newnes.
[10] Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582-592. https://doi.org/10.1016/j.ecoleng.2013.06.023
[11] Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: a review. Ecological Engineering, 73, 724-751.
https://doi.org/10.1016/j.ecoleng.2014.09.034
[12] Vymazal, J. (2011). Long-term performance of constructed wetlands with horizontal sub-surface flow: Ten case studies from the Czech Republic. Ecological Engineering, 37(1), 54-63. https://doi.org/10.1016/j.ecoleng.2009.11.028
[13] Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource Technology, 175, 594-601.
https://doi.org/10.1016/j.biortech.2014.10.068
[14] Kurzbaum, E., Kirzhner, F., Armon, R. (2012). Improvement of water quality using constructed wetland systems. Reviews on Environmental Health, 27(1), 59-64.
https://doi.org/10.1515/reveh-2012-0005
[15] Murphy, C., Rajabzadeh, A. R., Weber, K. P., Nivala, J., Wallace, S. D., Cooper, D. J. (2016). Nitrification cessation and recovery in an aerated saturated vertical subsurface flow treatment wetland: Field studies and microscale biofilm modeling. Bioresource Technology, 209, 125-132.
https://doi.org/10.1016/j.biortech.2016.02.065
[16] Wang, X., Zhang, F., Ghulam, A., Trumbo, A. L., Yang, J., Ren, Y., & Jing, Y. (2017). Evaluation and estimation of surface water quality in an arid region based on EEM-PARAFAC and 3D fluorescence spectral index: A case study of the Ebinur Lake Watershed, China. Catena, 155, 62-74. https://doi.org/10.1016/j.catena.2017.03.006
[17] Beutel, M. W., Newton, C. D., Brouillard, E. S., Watts, R. J. (2009). Nitrate removal in surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin, Washington. Ecological Engineering, 35(10), 1538-1546.
https://doi.org/10.1016/j.ecoleng.2009.07.005
[18] Brix, H., Arias, C. A. (2005). The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecological Engineering, 25(5), 491-500.
https://doi.org/10.1016/j.ecoleng.2005.07.009
[19] Al-Isawi, R. H. K., Sani, A., Almuktar, S. A. A. A. N., Scholz, M. (2015). Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons. Water Science and Technology, 71(6), 938-946.
https://doi.org/10.2166/wst.2015.054
[20] Jing, S. R., Lin, Y. F., Wang, T. W., Lee, D. Y. (2002). Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes. Journal of Environmental Quality, 31(2), 690-696.
https://doi.org/10.2134/jeq2002.6900
[21] Trang, N. T. D., Konnerup, D., Schierup, H. H., Chiem, N. H., Brix, H. (2010). Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: effects of hydraulic loading rate. Ecological Engineering, 36(4), 527-535.
https://doi.org/10.1016/j.ecoleng.2009.11.022
[22] Metcalf and Eddy Inc. 1991. Wastewater Engineering: Treatment, Disposal andReuse, 3rd ed. McGraw Hill, New York, 1334 pp. (revised by G. Tchobanoglousand F.L. Burton).
[23] Paing, J., Guilbert, A., Gagnon, V., Chazarenc, F. (2015). Effect of climate, wastewater composition, loading rates, system age and design on performances of French vertical flow constructed wetlands: A survey based on 169 full scale systems. Ecological Engineering, 80, 46-52.
https://doi.org/10.1016/j.ecoleng.2014.10.029
[24] Fan, J., Zhang, B., Zhang, J., Ngo, H.H., Guo, W., Liu, F., Guo, Y., Wu, H. (2013). Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresource Technology, 141, 117-122.
https://doi.org/10.1016/j.biortech.2013.03.077
[25] Kadlec, R.H.; Knight, R.L., 1996. Treatment Wetlands; CRC Press/Lewis Publishers: Boca Raton, FL, USA.
[26] Cooper, P. (2005). The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Science and Technology, 51(9), 81-90. https://doi.org/10.2166/wst.2005.0293
[27] American Public Health Association (APHA)., 2005. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds). Standard methods for the examination of water and wastewater. 21st edn., American Water Works Association: Water Pollution Control Federation. Washington. DC. 1368p.
[28] Sharma, P. K., Minakshi, D., Rani, A., Malaviya, P. (2018). Treatment efficiency of vertical flow constructed wetland systems operated under different recirculation rates. Ecological Engineering, 120, 474-480.
https://doi.org/10.1016/j.ecoleng.2018.07.004
[29] Cooper, P. F., Job, G. D., Green, M. B., Shutes, R. B. E. (1997). Reed beds and constructed wetlands for wastewater treatment. European water pollution control, 6(7), 49. https://resolver.scholarsportal.info/resolve/09255060/v07i0006/49_rbacwfwt.xml
[30] Sharma, P. K., Takashi, I., Kato, K., Ietsugu, H., Tomita, K., Nagasawa, T. (2013). Effects of load fluctuations on treatment potential of a hybrid sub-surface flow constructed wetland treating milking parlor waste water. Ecological Engineering, 57, 216-225.
https://doi.org/10.1016/j.ecoleng.2013.04.031
[31] Kadlec, R. H., Wallace, S., 2008. Treatment wetlands. Second ed., CRC press, Newyork.
[32] Tanner, C. C., Clayton, J. S., Upsdell, M. P. (1995). Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands—I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Research, 29(1), 17-26. https://doi.org/10.1016/0043-1354(94)00139-X
[33] Kantawanichkul, S., Wannasri, S. (2013). Wastewater treatment performances of horizontal and vertical subsurface flow constructed wetland systems in tropical climate. Songklanakarin Journal of Science and Technology, 35(5), 599-603.
[34] Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review Ecological Engineering, 37(1), 70-89.
https://doi.org/10.1016/j.ecoleng.2009.08.003
[35] Saeed, T., Muntaha, S., Rashid, M., Sun, G., Hasnat, A. (2018). Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products. Journal of Cleaner Production, 189, 442-453.
https://doi.org/10.1016/j.jclepro.2018.04.115
[36] Amin, A. F. M. S., Hasnat, A., Khan, A. H., Ashiquzzaman, M. (2015). Residual cementing property in recycled fines and coarse aggregates: Occurrence and quantification. Journal of Materials in Civil Engineering, 28(4), 04015174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001472
[37] Cooper, P. F., McBarnet, W., O’Donnell, D., MacMahon, A., Houston, L., Brian, M. (2010). The treatment of run-off from a fertilizer factory for nitrification, denitrification and P removal by constructed wetlands: a demonstration study. Water Science and Technoogyl, 61(2), 355-363.
https://doi.org/10.2166/wst.2010.801
[38] Kara Thanasis, A. D., Johnson, C. M. (2003). Metal removal potential by three aquatic plants in an acid mine drainage wetland. Mine Water and the Environment, 22(1), 22-30.
https://doi.org/10.1007/s102300300004
[39] Reed, S. C., Brown, D. (1995). Subsurface flow wetlands—a performance evaluation. Water Environment Research, 67(2), 244-248.
http://www.jstor.org/stable/25044544.
[40] Ghosh, D., Gopal, B. (2010). Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecological Engineering, 36(8), 1044-1051.
https://doi.org/10.1016/j.ecoleng.2010.04.017
[41] Chang, J., Zhang, X., Perfler, R., Xu, Q. S., Niu, X. Y., Ge, Y. (2007). Effect of hydraulic loading rate on the removal efficiency in a constructed wetland in subtropical China. Fresenius Environmental Bulletin, 16(9), 1082-1086.
[42] Shubiao, W., David, A., Lin, L., Renjie, D. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 37(6), 948-954.
https://doi.org/10.1016/j.ecoleng.2011.02.002
[43] Manios, T., Stentiford, E. I., Millner, P. (2003). Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands. Journal of Environmental Science and Health, Part A, 38(6), 1073-1085.