[1] Babapoor, A., Hajimohammadi, R., Jokar, S. M., Paar, M. (2020). Biosensor design for detection of mercury in contaminated soil using rhamnolipid biosurfactant and luminescent bacteria. Journal of chemistry, 1-8.
[2] Beigi, M., Babapoor, A., Maghsoodi, V., Mousavi, S.M. (2009). Batch equilibrium and kinetics studies of Cd (II) ion removal from aqueous solution using porous chitosan hydrogel beads. Iranian journal of chemistry and chemical engineering, 28, 81-89.
[3] Mousavi, S. M., Hashemi, S. A., Babapoor, A., Savardashtaki, A., Esmaeili, H., Rahnema, Y., Mojoudi, F., Bahrani, S., Jahandideh, S., Asadi, M. (2019). Separation of Ni (II) from industrial wastewater by kombucha scoby as a colony consisted from bacteria and yeast: Kinetic and equilibrium studies. Acta chimica Slovenica, 66, 865–873.
[4] Ji, Y., Ma, C., Li, J., Zhao, H., Chen, Q., Li, M., Liu, H. (2018). A magnetic adsorbent for the removal of cationic dyes from wastewater. Nanomaterials, 8(9), 710.
[5] Mousavi, S., Hashemi, S., Amani, A., Esmaeili, H., Ghasemi, Y., Babapoor, A., Mojoudi, F., Arjomand, O. (2018). Pb(II) Removal from synthetic wastewater using kombucha scoby and graphene Oxide/Fe3O4. Physical chemistry research, 6, 759-771.
[6] Programa Mundial de Evaluación de los Recursos Hídricos. (2022). Retrieved 24 April 2022, from https://es.unesco.org/wwap.
[7] Hernandez, JP. (2004). Estudio de un sistema de microalgas y bacterias para la eliminacion de nutrientes de las aguas residuales domesticas. Master Tesis, Instituto Politécnico Nacional..
[8] Mousavi, S.M., Hashemi, S.A., Esmaeili, H., Parvin, N., Mojoudi, F., Fateh, M.A., Fateh, H., Babapoor, A., Mazraedoost, S., Mazraedoost, Zarei, M. (2019). Investigating the activity of antioxidants Activities content in apiaceae and to study antimicrobial and insecticidal activity of antioxidant by using SPME fiber assembly carboxen/polydimethylsiloxane (CAR/PDMS). Journal of environmental treament techniques, 8, 174-184.
[9] Parvin, N., Babapoor, A., Nematollahzadeh, A., Mousavi, S.M. (2020). Removal of phenol and β-naphthol from aqueous solution by decorated graphene oxide with magnetic iron for modified polyrhodanine as nanocomposite adsorbents: Kinetic, equilibrium and thermodynamic studies. Reactive and functional polymers, 156, 104718.
[10] Gonzales, L. E., Canizares, R. O., Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource technology, 60, 259-262.
[11] Hoffman, J. P. (2002). Wastewater treatment with suspended and non suspended algae. Journal of phycology, 34, 757-763.
[12] Witt, V., Borchardt, J. A. (1960). The removal of nitrogen and phosphorus from sewage effluents through the use of algal culture. Journal of biochemical and microbiological technology and engineering, 2, 187-203.
[13] Post, A., Cohen, I., Romen, E. (1994). Characterization of two Chlorella vulgaris (Chlorophyceae) strains isolated from wastewater oxidation ponds. Journal of phycology, 30, 950-954.
[14] Guieysse, B., Muñoz, R. (2006). Algal-bacterial processes for treatment of hazardous contaminants. Water research, 40, 2799-2815.
[15] Lee, Y. K. (2001). Microalgae mass culture systems and methods: Their limitation potential. Journal of applied phycology, 13, 307-315.
[16] Palmer, C. M. (1969). A composite rating of algae tolerant organic pollution. Journal of phycology, 5, 78-82.
[17] N. Abdel-Raouf; A.A. Al-Homaidan; I.B.M. Ibraheem. (2012). Microalgae and wastewater treatment. Saudi jurnal of biological sciences, 19, 257-275.
[18] Aslan S., Kapdan IK. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological engineering, 28, 64-70.
[19] Gutiérrez, N., Valencia, E., Aragón, R. (2014). Eficiencia de remoción de DBO5 y SS en sedimentador y lecho filtrante para el tratamiento de aguas residuales del beneficio de café (Coffea arabica). Colombia forestal, 17, 151-159.
[20] Larsdotter, K. (2006). Wastewater treatment with microalgae - a literature review. Vatten, 62,31-38.
[21] Ayodha D, K. (2013). Bioremediation of wastewater by using microalgae: an experimental study. International journal of life sciences biotechnology and pharma research, 2, 339-346.
[22] Benavente Valdes, J., Montanez, J., Aguilar, C., Mendez Zavala, A., Valdivia, V. (2012). Tecnologia de cultivo de microalgas en fotobiorreactores. Revista cientifica de la Universidad Autonoma de Coahuila, 4, 7, 1-12.
[23] Samori, G., Samori, C., Guerrini, F., Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water research, 47, 791-801.
[24] Lopez Hernandez, I., Vasquez Arroyo, J., Alvarez Reyna, V. (2016). Remoción biológica de nutrientes en aguas residuales urbanas con fotobiorreactores utilizando microalgas. Revista Mexicana de Ciencias Agrícolas, 17, 3569-3580.
[25] Avila Peltroche, J. J. (2015). Evaluacion de la remocion de nitratos y fosfatos a nivel laboratorio por microalgas libres e inmovilizadas para el tratamiento terciario de aguas residuales municipales. Professional Thesis, Universidad Ricardo Palma, Escuela Profesional de Biologia, Lima.
[26] Shi, J., Podola, B., Melkonian, M. (2014). Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresource technology, 154, 260-266.