[1] Ityel, D. (2011). Ground water: Dealing with iron contamination. Filtration and separation, 48(1), 26–28.
[2] Le Luu, T. (2019). Remarks on the current quality of groundwater in Vietnam. Environmental science and pollution research, 26(2), 1163–1169.
[3] World Health Organization (WHO). World health organization guidelines for drinking water quality, recommendations. Geneva, Switzerland: WHO; 1984. p. 79.
[4] Ji, Y., Pan, Z., Yuan, D., Lai, B. (2018). Advanced treatment of the antibiotic production wastewater by ozone/zero-valent iron process. Clean - soil, air, water, 46(3), 1700666.
[5] Qadafi, M., Notodarmojo, S., & Zevi, Y. (2020). Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes. Science of the total environment, 747, 141-540.
[6] Martin, N., Benezet-Toulze, M., Laplace, C., Faivre, M., Langlais, B. (1992). Design and efficiency of ozone contactors for disinfection. Ozone: science and engineering, 14(5), 391–405.
[7] Xu, P., Janex, M.-L., Savoye, P., Cockx, A., Lazarova, V. (2002). Wastewater disinfection by ozone: Main parameters for process design. Water research, 36(4), 1043–1055.
[8] El Araby, R., Hawash, S., El Diwani, G. (2009). Treatment of iron and manganese in simulated groundwater via ozone technology. Desalination, 249(3), 1345–1349.
[9] Sripiboon, S., Suwannahong, K. (2018). Color removal by ozonation process in biological wastewater treatment from the breweries. IOP conference series: Earth and environmental science, 167, 012010.
[10] Loegager, T., Holcman, J., Sehested, K., & Pedersen, T. (1992). Oxidation of ferrous ions by ozone in acidic solutions. Inorganic chemistry, 31(17), 3523–3529.
[11] Apiradee, S., and Ratsamee, S. (2021). Removal of Iron from groundwater by ozonation: the response surface methodology for parameter optimization. Environment and natural resources journal, 19 (4), 330-336.
[12] Malkov, V., Sadar, M. (2010). Control of iron and manganese ozone removal by differential turbidity measurements. Ozone: science and engineering, 32(4), 286–291.
[13] Paillard, H., Legube, B., Bourbigot, M. M., Lefebvre, E. (1989). Iron and manganese removal with ozonation in the presence of humic substances. ozone: Science and engineering, 11(1), 93–113.
[14] Sallanko, J., Lakso, E., Röpelinen, J. (2006). Iron behavior in the ozonation and filtration of groundwater. Ozone: Science and engineering, 28(4), 269–273.
[15] Rakness, K. L., Renner, R. C., Hegg, B. A., Hill, A. G. (1988). Practical design model for calculating bubble diffuser contactor ozone transfer efficiency. Ozone: Science and engineering, 10(2), 173–214.
[16] Biń, A. K. (2004). Ozone dissolution in aqueous systems treatment of the experimental data. Experimental thermal and fluid science, 28(5), 395–405..
[17] Yao, P. X., Hendrawan, F. B., Bi, H. T., Wang, J. H., Fu, J. (2008). Effects of organic compounds and recycling on ozone absorption in a portable water purification unit. Journal of environmental engineering and science, 7(1), 1–8.
[18] Flores-Payán, V., Herrera-López, E. J., Navarro-Laboulais, J., López-López, A. (2015). Parametric sensitivity analysis and ozone mass transfer modeling in a gas–liquid reactor for advanced water treatment. Journal of industrial and engineering chemistry, 21, 1270–1276.
[19] Hu, L., Xia, Z. (2018). Application of ozone micro-nano-bubbles to groundwater remediation. Journal of hazardous materials, 342, 446–453.
[20] Magara, Y., Itoh, M., Morioka, T. (1995). Application of ozone to water treatment and power consumption of ozone generating systems. Progress in nuclear energy, 29, 175–182.
[21] Polio, I. (2004). Selected Design Criteria for Ozone Production. Journal of advanced oxidation technologies, 7(1), 31–36.
[22 Cuong, L. C., Nghi, N. H., Dieu, T. V., Oanh, D. T. Y., Vuong, D. D. (2019). Influence of oxygen concentration, feed gas flow rate and air humidity on the output of ozone produced by corona discharge: Frailty and life satisfaction in elderly. Vietnam journal of chemistry, 57(5), 604–608.
[23] Alsheyab, M. A. T., Muñoz, A. H. (2007). Optimisation of ozone production for water and wastewater treatment. Desalination, 217(1–3), 1–7.
[24] APHA, Standard methods for the examination of water and wastewater. Eds. 1992. Greenberg A.E., L.S. Clesceri and A.D.Eaton, 18th ed. American public health association, Washington, DC.
[25] Ratnawati, R., Kusumaningtyas, D. A., Suseno, P., Prasetyaningrum, A. (2018). Mass transfer coefficient of ozone in a bubble column. MATEC web of conferences, 156, 02015.
[26] Schulz, C. R., Bellamy, W. D. (2000). The role of mixing in ozone dissolution systems. Ozone: Science and engineering, 22(4), 329–350.
[27] Rakness, K. L., Hunter, G., Lew, J., Mundy, B., Wert, E. C. (2018). Design considerations for cost-effective ozone mass transfer in sidestream systems. Ozone: Science and engineering, 40(3), 159–172.
[28] Loegager, T., Holcman, J., Sehested, K., Pedersen, T. (1992). Oxidation of ferrous ions by ozone in acidic solutions. Inorganic chemistry, 31(17), 3523–3529.
[29] Gardoni, D., Vailati, A., Canziani, R. (2012). Decay of ozone in water: A review. Ozone: science and engineering, 34(4), 233–242.