Response surface methodology analysis of the photodegradation of methyl orange dye using synthesized TiO2/Bentonite/ZnO composites

Document Type : Research Paper

Authors

School of Chemistry, Damghan University, Damghan, Iran

Abstract

In this research, a modified TiO2/Bentonite (Be) composite with various values of zinc oxide was used as a photocatalyst in the degradation of methyl orange as a dye pollutant. The synthesized composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and Thermal gravimetric analysis (TGA). The results showed that the composite synthesized by 6.5% zinc oxide had the highest anatase phase and appropriate thermal stability. Moreover, the simultaneous effect of different parameters was investigated using the central composite (CC) design defined under response surface methodology (RSM). The results showed that the polynomial model obtained from the analysis of variance (ANOVA) correctly predicted the experimental data. The optimal conditions of dye degradation for the synthesized composite with 6.5% zinc oxide using 4 g/L of photocatalyst for 30 minutes at a pH=5 and a dye concentration of 20 ppm had the highest degradation percentage equal to 95% with a high desirability of 0.981. Also, the photocatalytic activity of TiO2/Be/ZnO (6.5%) in certain conditions for reuse in five consecutive steps showed a slight decrease in the degradation of methyl orange.

Keywords

Main Subjects


[1] Bhattacharyya, R., Ray, S. K. (2015). Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical engineering journal, 260, 269-283.
[2] Jauris, I. M., Fagan, S. B., Adebayo, M. A., Machado, F. M. (2016). Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes: a first principle approach. Computational and theoretical chemistry, 1076, 42-50.
[3] Rahimi, M., Mahmoudi, J. (2017). Studies on optimization of efficient parameters for removal of lead from aqueous solutions by natural zeolite as a low-cost adsorbent using response surface methodology. Advances in environmental technology, 3(2), 99-108.
 [4] Yilmaz, A. E., Boncukcuoğlu, R., Kocakerim, M., Karakaş, İ. H. (2011). Waste utilization: The removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination, 277(1-3), 156-163.
[5] Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C., Simon, N. M., Calvete, T., Veses, R. C. (2009). Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. Journal of hazardous materials, 164(2-3), 1213-1222.
[6] Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., Zanoni, M. V. B. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of hazardous materials, 174(1-3), 694-699.
[7] Rahimi, M., Mahmoudi, J. (2020). Heavy metals removal from aqueous solution by modified natural zeolites using central composite design. Periodica polytechnica chemical engineering, 64(1), 106-115.
[8] Ban, J. J., Xu, G. C., Zhang, L., Lin, H., Sun, Z. P., Lv, Y., Jia, D. Z. (2017). Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes. Journal of solid state chemistry, 256, 151-157.
[9] Zhu, X. D., Zheng, Y. L., Feng, Y. J., Sun, K. N. (2018). Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst. Journal of solid state chemistry, 258, 691-694.
[10] Hosseini, S. N., Borghei, S. M., Vossoughi, M., Taghavinia, N. (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74(1-2), 53-62.
[11] Asvadi, F., Fallah, N., Elyasi, S., Mohseni, F. (2017). Investigation of affecting operational parameters in photocatalytic degradation of reactive red 198 with TiO2: optimization through response surface methodology. Advances in environmental technology, 2(4), 169-177.
[12] Mahmoodi, N. M., Arami, M., Limaee, N. Y., Gharanjig, K., Ardejani, F. D. (2006). Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids and surfaces A: physicochemical and engineering aspects, 290(1-3), 125-131.
[13] Zyoud, A., Jondi, W., AlDaqqah, N., Asaad, S., Qamhieh, N., Hajamohideen, A., Hilal, H. S. (2017). Self-sensitization of tetracycline degradation with simulated solar light catalyzed by ZnO@ montmorillonite. Solid state sciences, 74, 131-143.
[14] Kitano, M., Matsuoka, M., Ueshima, M., Anpo, M. (2007). Recent developments in titanium oxide-based photocatalysts. Applied catalysis A: general, 325(1), 1-14.
[15] Tian, J., Wang, J., Dai, J., Wang, X., Yin, Y. (2009). N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange. Surface and coatings technology, 204(5), 723-730.
 [16] Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and pigments, 77(2), 327-33..
[17] Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied surface science, 252(5), 1410-1416.
[18] Habib, M. A., Shahadat, M. T., Bahadur, N. M., Ismail, I. M., Mahmood, A. J. (2013). Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. International nano letters, 3(1), 1-8.
[19] Krysa, J., Keppert, M., Jirkovsky, J., Stengl, V., Subrt, J. (2004). The effect of thermal treatment on the properties of TiO2 photocatalyst. Materials chemistry and physics, 86(2-3), 333-339.
[20] Moradi, S., Aberoomand Azar, P., Raeis Farshid, S., Abedini Khorrami, S., Givianrad, M. H. (2012). Effect of Additives on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite Prepared via Sol-Gel Process. International journal of chemical engineering, 215373.
[21] Hayati-Ashtiani, M. (2012). Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonites (montmorillonites). Particulate science and technology, 30(6), 553-564.
 [22] Zhang, G. K., Ding, X. M., He, F. S., Yu, X. Y., Zhou, J., Hu, Y. J., Xie, J. W. (2008). Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir, 24(3), 1026-1030.
 [23] Samadi, S., Motallebi, R., Nasiri Nasrabadi, M. (2016). Synthesis, characterization and application of Lanthanide metal-ion-doped TiO2/bentonite nanocomposite for removal of Lead (II) and Cadmium (II) from aquatic media. Journal of water and environmental nanotechnology, 1(1), 35-44.
[24] Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar energy materials and solar cells, 77(1), 65-82.
[25] Zhang, X., Yao, B., Zhao, L., Liang, C., Zhang, L., Mao, Y. (2001). Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. Journal of the electrochemical society, 148(7), G398.
[26] Rossetto, E., Petkowicz, D. I., dos Santos, J. H., Pergher, S. B., Penha, F. G. (2010). Bentonites impregnated with TiO2 for photodegradation of methylene blue. Applied clay science, 48(4), 602-606.
[27] Yener, H. B., Yılmaz, M., Deliismail, O., Ozkan, S. F., Helvacı, S. S. (2017). Clinoptilolite supported rutile TiO2 composites: Synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Separation and purification technology, 173, 17-26.
[28] Wang, X. T., Zhong, S. H., Xiao, X. F. (2005). Photo-catalysis of ethane and carbon dioxide to produce hydrocarbon oxygenates over ZnO-TiO2/SiO2 catalyst. Journal of molecular catalysis A: chemical, 229(1-2), 87-93.
[29] Pal, S., Mondal, S., Maity, J., Mukherjee, R. (2018). Synthesis and characterization of ZnO nanoparticles using Moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity. International journal of nanoscience and nanotechnology, 14(2), 111-119.
[30] Regulska, E., Brus, D. M., Rodziewicz, P., Sawicka, S., Karpinska, J. (2016). Photocatalytic degradation of hazardous Food Yellow 13 in TiO2 and ZnO aqueous and river water suspensions. Catalysis today, 266, 72-81.
[31] Bentouami, A., Ouali, M. S., De Menorval, L. C. (2010). Photocatalytic decolourization of indigo carmine on 1, 10-phenanthrolinium intercalated bentonite under UV-B and solar irradiation. Journal of photochemistry and photobiology A: chemistry, 212(2-3), 101-106.
[32] Bunnak, N., Laoratanakul, P., Bhalla, A. S., Manuspiya, H. (2014). Surface-modified porous clay heterostructure synthesized by introduction of cationic ions: effects on dielectric behavior. Ferroelectrics, 473(1), 187-197.
 [33] Murariu, M., Doumbia, A., Bonnaud, L., Dechief, A. L., Paint, Y., Ferreira, M., Dubois, P. (2011). High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules, 12(5), 1762-177.
 [34] Liufu, S. C., Xiao, H. N., Li, Y. P. (2005). Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polymer degradation and stability, 87(1), 103-110.
[35] Nguyen, V. C., Nguyen, N. L. G., Pho, Q. H. (2015). Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198. Advances in natural sciences: nanoscience and nanotechnology, 6(3), 035001.
 [36] Zhu, H., Jiang, R., Fu, Y., Guan, Y., Yao, J., Xiao, L., Zeng, G. (2012). Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 286, 41-48.
[37] Wang, Q., Chen, K., Zhang, Y. (2016). Preparation of La–TiO2/Bentonite and Its Photodegradation Properties to Cyanide. Journal of nanoscience and nanotechnology, 16(4), 4233-4238.
[38] Wang, Q., Chen, K., Zhang, Y. (2016). Preparation of La–TiO2/Bentonite and Its Photodegradation Properties to Cyanide. Journal of nanoscience and nanotechnology, 16(4), 4233-4238.
[39] Chang, C. J., Yang, T. L., Weng, Y. C. (2014). Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. Journal of solid state chemistry, 214, 101-107.
[40] Muruganandham, M., Swaminathan, M. (2006). Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process. Dyes and pigments, 68(2-3), 133-142.
[41] Padikkaparambil, S., Narayanan, B., Yaakob, Z., Viswanathan, S., Tasirin, S. M. (2013). Au/TiO2 reusable photocatalysts for dye degradation. International journal of photoenergy, 752605.
[42] Teixeira, S., Martins, P. M., Lanceros-Mendez, S., Kühn, K., Cuniberti, G. (2016). Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly (vinylidene difluoride)-co-trifluoroethylene. Applied surface science, 384, 497-504.