[1] Bhattacharyya, R., Ray, S. K. (2015). Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical engineering journal, 260, 269-283.
[2] Jauris, I. M., Fagan, S. B., Adebayo, M. A., Machado, F. M. (2016). Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes: a first principle approach. Computational and theoretical chemistry, 1076, 42-50.
[3] Rahimi, M., Mahmoudi, J. (2017). Studies on optimization of efficient parameters for removal of lead from aqueous solutions by natural zeolite as a low-cost adsorbent using response surface methodology. Advances in environmental technology, 3(2), 99-108.
[4] Yilmaz, A. E., Boncukcuoğlu, R., Kocakerim, M., Karakaş, İ. H. (2011). Waste utilization: The removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination, 277(1-3), 156-163.
[5] Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C., Simon, N. M., Calvete, T., Veses, R. C. (2009). Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. Journal of hazardous materials, 164(2-3), 1213-1222.
[6] Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., Zanoni, M. V. B. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of hazardous materials, 174(1-3), 694-699.
[7] Rahimi, M., Mahmoudi, J. (2020). Heavy metals removal from aqueous solution by modified natural zeolites using central composite design. Periodica polytechnica chemical engineering, 64(1), 106-115.
[8] Ban, J. J., Xu, G. C., Zhang, L., Lin, H., Sun, Z. P., Lv, Y., Jia, D. Z. (2017). Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes. Journal of solid state chemistry, 256, 151-157.
[9] Zhu, X. D., Zheng, Y. L., Feng, Y. J., Sun, K. N. (2018). Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst. Journal of solid state chemistry, 258, 691-694.
[10] Hosseini, S. N., Borghei, S. M., Vossoughi, M., Taghavinia, N. (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74(1-2), 53-62.
[11] Asvadi, F., Fallah, N., Elyasi, S., Mohseni, F. (2017). Investigation of affecting operational parameters in photocatalytic degradation of reactive red 198 with TiO2: optimization through response surface methodology. Advances in environmental technology, 2(4), 169-177.
[12] Mahmoodi, N. M., Arami, M., Limaee, N. Y., Gharanjig, K., Ardejani, F. D. (2006). Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids and surfaces A: physicochemical and engineering aspects, 290(1-3), 125-131.
[13] Zyoud, A., Jondi, W., AlDaqqah, N., Asaad, S., Qamhieh, N., Hajamohideen, A., Hilal, H. S. (2017). Self-sensitization of tetracycline degradation with simulated solar light catalyzed by ZnO@ montmorillonite. Solid state sciences, 74, 131-143.
[14] Kitano, M., Matsuoka, M., Ueshima, M., Anpo, M. (2007). Recent developments in titanium oxide-based photocatalysts. Applied catalysis A: general, 325(1), 1-14.
[15] Tian, J., Wang, J., Dai, J., Wang, X., Yin, Y. (2009). N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange. Surface and coatings technology, 204(5), 723-730.
[16] Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and pigments, 77(2), 327-33..
[17] Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied surface science, 252(5), 1410-1416.
[18] Habib, M. A., Shahadat, M. T., Bahadur, N. M., Ismail, I. M., Mahmood, A. J. (2013). Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. International nano letters, 3(1), 1-8.
[19] Krysa, J., Keppert, M., Jirkovsky, J., Stengl, V., Subrt, J. (2004). The effect of thermal treatment on the properties of TiO2 photocatalyst. Materials chemistry and physics, 86(2-3), 333-339.
[20] Moradi, S., Aberoomand Azar, P., Raeis Farshid, S., Abedini Khorrami, S., Givianrad, M. H. (2012). Effect of Additives on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite Prepared via Sol-Gel Process. International journal of chemical engineering, 215373.
[21] Hayati-Ashtiani, M. (2012). Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonites (montmorillonites). Particulate science and technology, 30(6), 553-564.
[22] Zhang, G. K., Ding, X. M., He, F. S., Yu, X. Y., Zhou, J., Hu, Y. J., Xie, J. W. (2008). Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir, 24(3), 1026-1030.
[23] Samadi, S., Motallebi, R., Nasiri Nasrabadi, M. (2016). Synthesis, characterization and application of Lanthanide metal-ion-doped TiO2/bentonite nanocomposite for removal of Lead (II) and Cadmium (II) from aquatic media. Journal of water and environmental nanotechnology, 1(1), 35-44.
[24] Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar energy materials and solar cells, 77(1), 65-82.
[25] Zhang, X., Yao, B., Zhao, L., Liang, C., Zhang, L., Mao, Y. (2001). Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. Journal of the electrochemical society, 148(7), G398.
[26] Rossetto, E., Petkowicz, D. I., dos Santos, J. H., Pergher, S. B., Penha, F. G. (2010). Bentonites impregnated with TiO2 for photodegradation of methylene blue. Applied clay science, 48(4), 602-606.
[27] Yener, H. B., Yılmaz, M., Deliismail, O., Ozkan, S. F., Helvacı, S. S. (2017). Clinoptilolite supported rutile TiO2 composites: Synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Separation and purification technology, 173, 17-26.
[28] Wang, X. T., Zhong, S. H., Xiao, X. F. (2005). Photo-catalysis of ethane and carbon dioxide to produce hydrocarbon oxygenates over ZnO-TiO2/SiO2 catalyst. Journal of molecular catalysis A: chemical, 229(1-2), 87-93.
[29] Pal, S., Mondal, S., Maity, J., Mukherjee, R. (2018). Synthesis and characterization of ZnO nanoparticles using Moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity. International journal of nanoscience and nanotechnology, 14(2), 111-119.
[30] Regulska, E., Brus, D. M., Rodziewicz, P., Sawicka, S., Karpinska, J. (2016). Photocatalytic degradation of hazardous Food Yellow 13 in TiO2 and ZnO aqueous and river water suspensions. Catalysis today, 266, 72-81.
[31] Bentouami, A., Ouali, M. S., De Menorval, L. C. (2010). Photocatalytic decolourization of indigo carmine on 1, 10-phenanthrolinium intercalated bentonite under UV-B and solar irradiation. Journal of photochemistry and photobiology A: chemistry, 212(2-3), 101-106.
[32] Bunnak, N., Laoratanakul, P., Bhalla, A. S., Manuspiya, H. (2014). Surface-modified porous clay heterostructure synthesized by introduction of cationic ions: effects on dielectric behavior. Ferroelectrics, 473(1), 187-197.
[33] Murariu, M., Doumbia, A., Bonnaud, L., Dechief, A. L., Paint, Y., Ferreira, M., Dubois, P. (2011). High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules, 12(5), 1762-177.
[34] Liufu, S. C., Xiao, H. N., Li, Y. P. (2005). Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polymer degradation and stability, 87(1), 103-110.
[35] Nguyen, V. C., Nguyen, N. L. G., Pho, Q. H. (2015). Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198. Advances in natural sciences: nanoscience and nanotechnology, 6(3), 035001.
[36] Zhu, H., Jiang, R., Fu, Y., Guan, Y., Yao, J., Xiao, L., Zeng, G. (2012). Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination, 286, 41-48.
[37] Wang, Q., Chen, K., Zhang, Y. (2016). Preparation of La–TiO2/Bentonite and Its Photodegradation Properties to Cyanide. Journal of nanoscience and nanotechnology, 16(4), 4233-4238.
[38] Wang, Q., Chen, K., Zhang, Y. (2016). Preparation of La–TiO2/Bentonite and Its Photodegradation Properties to Cyanide. Journal of nanoscience and nanotechnology, 16(4), 4233-4238.
[39] Chang, C. J., Yang, T. L., Weng, Y. C. (2014). Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. Journal of solid state chemistry, 214, 101-107.
[40] Muruganandham, M., Swaminathan, M. (2006). Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process. Dyes and pigments, 68(2-3), 133-142.
[41] Padikkaparambil, S., Narayanan, B., Yaakob, Z., Viswanathan, S., Tasirin, S. M. (2013). Au/TiO2 reusable photocatalysts for dye degradation. International journal of photoenergy, 752605.
[42] Teixeira, S., Martins, P. M., Lanceros-Mendez, S., Kühn, K., Cuniberti, G. (2016). Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly (vinylidene difluoride)-co-trifluoroethylene. Applied surface science, 384, 497-504.