[1] Mirsanjouri, M. M., Mohammadyari, F., Basiri, R., Hamidipour, F. (2015). Modeling the EC, SAr and TDS in groundwater using artificial neural network (case study: Mehran and Dehloran Plain). Human and environmental quarterly journal, 42, 1-12.
[2] Khudair, B. H., Jasim, M.M., Alsaqqar, A.S. (2018). Artificial neural network model for the prediction of groundwater quality. Civil engineering journal, 4(12), 2959-2970.
[3] Jalalkamali, A. (2015). Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth science informatics, 8(4), 885-894.
[4] Mokarram, M. (2016). Modeling of multiple regression and multiple linear regressions for prediction of groundwater quality (case study: north of Shiraz). Modeling earth systems and environment, 2(1), 3.
[5] Adhikary, P. P., Dash, C. J., Chandrasekharan, H., Rajput, T. B. S., Dubey, S. K. (2012). Evaluation of groundwater quality for irrigation and drinking using GIS and geostatistics in a peri-urban area of Delhi, India. Arabian journal of geosciences, 5(6), 1423-1434.
[6] Adiat, K. A. N., Nawawi, M. N. M., Abdullah, K. (2013). Application of multi-criteria decision analysis to geoelectric and geologic parameters for spatial prediction of groundwater resources potential and aquifer evaluation. Pure and applied geophysics, 170(3), 453-471.
[7] Arabgol, R., Sartaj, M., Asghari, K. (2016). Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. Environmental modeling and assessment, 21(1), 71-82.
[8] Khan, R., Jhariya, D. C. (2017). Groundwater quality assessment for drinking purpose in Raipur City, Chhattisgarh using water quality index and geographic information system. Journal of the geological society of India, 90(1), 69-76.
[9] Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S. A. A., Ghorbani, S. (2019). Modeling groundwater quality parameters using hybrid neuro-fuzzy methods. Water resources management, 33(2), 847-861.
[10] Wagh, V. M., Panaskar, D. B., Muley, A. A., Mukate, S. V., Lolage, Y. P., Aamalawar, M. L. (2016). Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India. Modeling earth systems and environment, 2(4), 1-10.
[11] Kisi, O., Keshavarzi, A., Shiri, J., Zounemat-Kermani, M., Omran, E. S. E. (2017). Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrology research, 48(6), 1508-1519
[12] Kisi, O., Azad, A., Kashi, H., Saeedian, A., Hashemi, S. A. A., Ghorbani, S. (2019). Modeling groundwater quality parameters using hybrid neuro-fuzzy methods. Water resources management, 33(2), 847-861.
[13] Al-Rekabi, H., Al-Ghanimy, D. B. G. A. (2016). Determine the validity of the Euphrates River (Middle Euphrates) for drinking purpose using a water quality index (CCME WQI). Mesopotamia environmental journal, 2(1), 1-11.
[14] Pramada, S. K., Mohan, S., Sreejith, P. K. (2018). Application of genetic algorithm for the groundwater management of a coastal aquifer. ISH journal of hydraulic engineering, 24(2), 124-130.
[15] Gaikwad, S., Gaikwad, S., Meshram, D., Wagh, V., Kandekar, A., Kadam, A. (2020). Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality. Environment, development and sustainability, 22(3), 2591-2624.
[16] Shyamala, G., Ramesh, S., Saravanakumar, N. (2020). Major ion chemistry and groundwater quality evaluation for irrigation. Journal of applied sciences and environmental management, 24(4), 699-705.
[17] Zareh-Abianeh, H., Bayat-Vorkeshi, M., Akhavan, S., Mohammadi, M. (2011). Estimation of groundwater nitrate in Hamedan-Bahar plain using artificial neural network and data separation effect on prediction precision. Ecology, 37(58), 129-140.
[18] Rafati, L., Mokhtari, M., Fazelinia, F., Momtaz, S. M., Mahvi, A. H. (2013). Evaluation of ground water fluoride concentration in Hamadan Province west of IRAN. Iranian journal of health sciences, 1(3), 71-76.
[19] Moasheri, S. A., Rezapour, O. M., Beyranvand, Z., Poornoori, Z. (2013). Estimating the spatial distribution of groundwater quality parameters of Kashan plain with integration method of geostatistics - artificial neural network optimized by genetic-algorithm. International journal of agriculture and crop science, 5(20), 2434-2442.
[20] Emami, S., Arvanaghi, A., Hemmati, M. (2017). Evaluation and comparison imperialist competitive and genetic algorithms in estimation of groundwater quality parameters. Journal of hydrogeology, 2(2), 44-53.
[21] Jalalkamali, A., Jalalkamali, N. (2018). Adaptive network-based fuzzy inference system-genetic algorithm models for prediction groundwater quality indices: a GIS-based analysis. Journal of artificial intelligence and data mining, 6(2), 439-445.
[22] Asefi, M., Zamani-Ahmadmahmoodi, R. (2018). Analysis of physiochemical and microbial quality of waters of the Karkheh River in southwestern Iran using multivariate statistical methods. Advances in environmental technology, 4(2), 75-81.
[23] Bhat, B., Parveen, S., Hassan, T. (2018). Seasonal assessment of physicochemical parameters and evaluation of water quality of river Yamuna, India. Advances in environmental technology, 4(1), 41-49.
[24] Movagharnejad, K., Tahavvori, A., Moghaddam Ali, F. (2017). Artificial neural network modeling for predicting of some ion concentrations in the Karaj River. Advances in environmental technology, 3(2), 109-117.
[25] Jafari, R., Torabia,n A., Ghorbani, M. A., Mirbagheri, S. A., Hassani, A. H. (2019). Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods. Journal of water supply, 68(7), 573-584.
[26] Maroufpoor, S., Jalali, M., Nikmehr, S., Shiri, N., Shiri, J., Maroufpoor, E. (2020). Modeling groundwater quality by using hybrid intelligent and geostatistical methods. Environmental science and pollution research international, 27, 28183-28197.
[27] Banadkooki, F. B., Ehteram, M., Ahmed, A. N., Teo, F. Y., Fai, C. M., Afan, H. A., El-Shafie, A. (2020). Enhancement of groundwater-level prediction using an integrated machine learning model optimized by whale algorithm. Natural resources research, 29(5), 3233-3252.
[28] Hosseinzadeh Arabloyeyekan, E., Charbghoo, T. (2013). Hydro-geochemical study of Salmas plain groundwater resources, 17th Iranian geological society, 7-9 November.
[29] Mirjalili, S., Mirjalili, S. M., Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
[30] Emami, H., Derakhshan, F. (2015). Election algorithm: A new socio-politically inspired strategy. AI Communications,28(3), 591-603.
[31] Atashpaz-Gargari, E., Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
[32] Drucker, H., Surges, C. J. C., Kaufman, L., Smola, A., Vapnik, V. (2013). Support vector regression machines.
Advances in neural information processing systems, 155–161, 1997.
[33] Gorbani, M. A., Shahabboddin, Sh., Zare Haghi, D., Azani, A., Bonakdari, H., Ebtehaj, I. (2017). Application of firefly algorithm-based support vector machines for prediction of filed capacity and permanent wilting point. Soil and tllage research, 172, 32-38.
[34] Isazadeh, M., Arabzadeh, R., Darbandi, S. (2016). Performance evaluation of geostatistical methods and artificial neural network in estimation of aquifer quality parameters (Case Study: Qorveh Dehghan Plain). JWSS-Isfahan university of technology, 20(77), 197-210.
[35] Mirzavand, M., Ghasemiyeh, H., Sadatinejad, S.J., Akbari, M. (2015). Simulation of changes in groundwater quality using artificial neural network (case study: Kashan aquifer). Journal of iranian natural resource, 68(1), 159-171.
[36] Nourani, V., Alami, M.T., Vousoughi, F.D. (2016). Self-organizing map clustering technique for ANN-based spatiotemporal modeling of groundwater quality parameters. Journal of hydro informatics, 18(2), 288-309.