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 During recent decades, the excessive use of water has led to the scarcity of the available 
surface and groundwater resources. Quantitative and qualitative surveys of groundwater 
resources indicate that accurate and efficient optimization methods can help to overcome 
the numerous challenges in assessment of groundwater quality. For this purpose, three 
optimization meta-heuristic algorithms, including imperialist competitive (ICA), election 
(EA), and grey wolf (GWO), as well as the support vector regression method (SVR), were 
used to simulate the groundwater quality of the Salmas Plain. To achieve this goal, the data 
of the groundwater quality for the Salmas plain were utilized in a statistical period of 10 
years (2002-2011). The results were evaluated according to Wilcox, Schuler, and Piper 
standards. The results indicated higher accuracy of the GWO-SVR method compared to the 
other two methods with values of R2=0.981, RMSE=0.020 and NSE=0.975. In general, a 
comparison of the results obtained from the hybrid methods and different diagrams showed 
that the samples had low hardness and corrosion. Also, the results indicated the high 
capability and accuracy of the GWO-SVR method in estimating and simulating the 
groundwater quality. 
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1. Introduction 

The use of groundwater is one of the basic solutions for 
providing drinking and agricultural water in arid and semi-
arid regions, including Iran. In recent years, the levels and 
quality of groundwater have declined due to the growing 
consumption of these resources as well as low levels of 
natural nutrients. The sodium absorption ratio (SAR) of 
groundwater is a very important parameter in soil 
management and stability. Electric conductivity (EC) is also 
considered as a major parameter in monitoring the quality 
of drinking and agricultural water. This parameter is directly 
related to the amount of water salinity, sodium absorption, 
and drinking water quality [1]. The total dissolved solids 
(TDS) is also a very effective parameter that indicates the 
palatability of drinking water. In a way, the increased 
salinity and reduced quality of groundwater are some of the 
most important worldwide environmental challenges. 

Given the importance of the quality of water resources, 
water quality parameters are components that must be 
carefully predicted and simulated. In the simulation of 
complex nonlinear systems in water resource management 
topics conducted by various researchers, evolutionary 
algorithms and artificial neural networks have provided 
favorable results. Artificial neural networks and 
evolutionary algorithms with compatibility and 
unpredictable changes are good alternatives to physical and 
regression models to estimate the behavior of water 
resources. Evolutionary algorithms and artificial neural 
networks have shown satisfactory results in modeling non-
linear complex systems in water resources management 
issues, which have been reported in various areas by 
researchers. Due to their compatibility and impressive 
progresses, they are an appropriate alternative to physical 
and regression models for estimating the behavior of water 
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 resources systems. Various studies have been conducted 
regarding groundwater level modeling and estimating. 
Table 1 shows the most practical studies on the 
management and estimation of groundwater quality 
parameters using meta-altruistic algorithms and artificial 
neural network (ANNs) methods.  

Table 1. Most  practical studies on the management and 
estimation of groundwater quality parameters 
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Zareh-Abianeh (2011) used artificial neural networks to 
predict groundwater nitrate in the Hamadan Plain. The 
results showed a good agreement between the values 
obtained from the implementation of the artificial neural 
network and the observed values [17]. Rafati et al. (2013) 
examined the trend of fluoride changes and monitored the 
groundwater in Hamadan province. The results showed that 
the trend of anion changes was between 0 and 1.78 mg/l, 
and its rate in 49% of the stations was less than the standard 
proposed by the Environmental Protection Agency [18]. 
Moasheri et al. (2013) used geostatistical techniques, a 
neural network, and a genetic algorithm to predict the 
amounts of sodium, calcium, and magnesium in the 
groundwater of the Kashan Plain, which reported the 
results of their proposed model at 90.9% [19]. Emami et al. 
(2017) evaluated an imperialist competitive and genetic 
algorithm for estimating the groundwater quality 
parameters in the Bostanabad Plain. The validation of the 
simulation with the ICA model showed that the mean 
square error (MSE) in the testing sample for SAR and Cl were 
0.0134 and 0.0098, respectively. Also, the R2 of validity for 
SAR and Cl were 0.93 and 0.952, respectively [20]. 
Jalalkamali and Jalalkamali (2018) applied the geographic 
information systems (GIS) and ANN methods to predict the 
groundwater quality in the Kerman Plain. The results 
showed that the ANFIS-GA method performed well 
compared to the ANFIS model [21]. Asefi and Zamani-
Ahmadmahmoodi (2018) used principal component 
analysis (PCA) to determine the degree of significance of the 
qualitative parameters of the water resources in the 
Karkheh River in southwestern Iran. The PCA factors 
indicated that the parameters influencing the changes in 
the water quality were generally related to weathering and 
land washing in response to floods, organic contamination 
from household wastewater, waste from sand washing, and 
runoff from chemical fertilizers [22]. Bhat et al. (2018) 
evaluated the physico-chemical parameters and water 

quality of the Yamuna River in India on a seasonal basis. The 
assessment of physico-chemical parameters indicated that 
the selected stations were greatly impacted by industrial 
effluents and domestic sewage; thus, the river water 
needed to be treated before consuming to avoid water-
related diseases that could have harmful effects on humans 
and aquatic biota [23]. Movagharnejad et al. (2017) 
designed a multi-layer perceptron artificial neural network 
model to predict the calcium, sodium, chloride, and sulfate 
ion concentrations of the Karaj River. The results indicated 
that the ANN model was successfully applied to predict 
calcium ion concentration [24]. Jafari et al. (2019) used four 
soft computing methods to estimate the TDS values of 
groundwater in the Tabriz plain: multilayer perceptron 
(MLP), adaptive neuro-fuzzy inference system (ANFIS), 
support vector machine (SVM), and gene expression 
programming (GEP). The results showed that the MLP, 
ANFIS, SVM, and GEP models performed well in estimating 
the TDS changes [25]. Maroufpoor et al. (2020) used a 
neuro-fuzzy system integrated with fuzzy c-means data 
clustering (FCM) and grid partition (GP) methods to model 
groundwater quality [26]. Barzegari Banadkooki et al. 
(2020) predicted the groundwater level (GWL) of 
precipitation and temperature data based on different time 
delays. The results showed the MLP-WA model performed 
well compared to other models [27]. According to the 
literature, the Salmas Plain is one of the most important 
plains in North-West of Iran and supplies water to various 
sections of its neighboring areas; thus, estimating and 
modeling the groundwater quality in this plain is crucial. 
Therefore, the purpose of this study was to apply the GWO-
SVR, EA-SVR, and ICA-SVR hybrid models and compare their 
results with each other; also, the Wilcox, Schuler, and Piper 
diagrams were used in estimating and optimizing the water 
quality parameters. 

2. Materials and methods 

2.1. Case study  

The Salmas plain is located in northwestern Iran in the 
province of West Azerbaijan. It is located between the 
latitude of 37˚ 6' to 44˚ 20' N and 45˚ 20' E. The total area of 
the Salmas Plain is 4268 km2, and the average elevation is 
1340 meters above the sea level. Its main feeding river is 
the Zolachai, which originates from the west to the east of 
the Turkish border heights, and after passing the Salmas 
plain, finally flows into the Urmia Lake. Figure 1 shows the 
location of the study area on the map [28].   
The required statistics and data on the study wells from 
2005-2015 were used to model the groundwater quality by 
each of the methods, and the required analyses were 
performed. The studied parameters included EC, TDS, pH, 
Ca2 +, Mg2 +, Na +, K +, HCO3

-, CO3
-, Cl-, and SO4

2-.  

http://aet.irost.ir/?_action=article&au=7647&_au=Mehrnaz++Asefi
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 2.2. The used algorithms 

2.2.1. Gray wolf optimizer algorithm (GWO) 

The flowchart of the GWO algorithm is shown in Figure 2.  

2.2.2. Election algorithm (EA)   

A path through the EA’s components is shown as a flowchart 
in Figure 3 [29].  

2.2.3. Imperialist competitive algorithm (ICA) 

The flowchart of the ICA algorithm is shown in Figure 4. [30]:  
 

 
Fig. 1. Location of the Salmas plain on the map   

 

 

Fig. 2. Flowchart of the GWO algorithm [29]  
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Fig. 3. Flowchart of the EA algorithm [30]  

 
Fig. 4. Flowchart of the ICA algorithm [31] 

2.2.4. Support vector regression  

Support vector regression (SVR) is an SVM-based regression 
method. The SVM is a supervised machine learning method 
equipped with learning algorithms [32]. The main principle 
behind SVR is the same as the SVM: it is a discriminative 
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an optimal hyperplane that maximizes the margin to 
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 solve the following equations to obtain an optimal 
hyperplane:  

f(x) = wφ(x) + b (1) 

in which w is a normal vector, b is a scaler, and   is the 

kernel function.  

minimize 
1

2
 ‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖

𝑛
𝑖=1 + 𝜉∗

𝑖
  (2) 

subject to {

𝑦𝑖−< 𝑤, 𝑥𝑖 > −𝑏      ≤ ԑ + 𝜉𝑖

< 𝑤, 𝑥𝑖 > −𝑏 − 𝑦𝑖     ≤ ԑ + 𝜉∗
𝑖
   

𝜉𝑖 , 𝜉∗
𝑖

          ≥ 0
 (3) 

where 
i  and *

i show the slack variables that determine 

the upper and lower excess deviations, 
21

w
2

 is the 

regularization term, C is the error penalty factor used to 
regulate the difference between the empirical risk and the 
regularization term, and   is the loss function that identifies 

the accuracy of the training data point. A generic form of Eq. 
(4) can be defined by using the Lagrange multiplier 
technique and optimality constraints, as follows: 

 

w=∑ (αi − α∗
i)

n
i=1     

     

f(x) = ∑(αi − α∗
i)K(x, xi

n

i=1

) + b 

 
 
 
 
 

(4) 

k(x, xi) = φ(xi) × φ(xj) (5) 

where ( , )iK x x  is the kernel function, and it is the product 

of the two inner vectors ix  and jx in the feature space 

( )ix  and ( )jx , respectively.  Three well-known kernel 

functions are sigmoid, polynomial basis function, and radial 
basis function (RBF). In this paper, the RBF kernel function 
is used in SVR due to its high performance and easy 
configuration compared to other kernel functions. The RBF 
kernel is defined as 

k(x, xi) = exp (−‖xi − x‖/2σ2 (6) 

The proper setting of C, , and   plays an important role in 

the prediction performance of the SVR.  

2.2.5. Wilcox, schuler and piper diagrams  

The Wilcox classification method and its diagram are the 
most practical means for categorizing water in agriculture 
sector in hydro-chemical studies. In the Wilcox diagram, the 
horizontal axis represents the water salinity (μm/cm) while 
the sodium absorption ratio (SAR) is plotted on the vertical 
axis. In the Schuler diagram, a separate axis is considered 
for each of the cations (Na, K, Mg, and Ca), Cl, So4, Hco3, TDS 
and Total hardness (TH). By connecting the corresponding 
points for any parameter on these axes, the suitability of 
water for drinking purpose can be determined.  In the Piper 

diagram, it is possible to compare a large amount of 
analyzed data. The available options are also more limited 
and accumulated in this diagram. The size of the circles in 
the Piper diagram is used to show the amount of total 
solute. This diagram shows the chemical properties of water 
in terms of its relative concentration.  

2.2.6. Evaluation criteria  

The efficiency of the proposed methods was evaluated 
using the correlation coefficient (R2), root mean square 
error (RMSE), and the Nash–Sutcliffe efficiency index (NSE) 
[33]: 

R2 = [
∑ (ei − e̅)n

i=1  (pi − p̅)

∑ √(ei − e̅)2n
i=1  √(pi − p̅)2

]

2

 (7) 

RMSE = √
1

n
 ∑(ei − pi)

2

n

i=1

 (8) 

NSE = 1 −
∑ (ei − pi)

2n
i=1

∑ (ei − p̅)2n
i=1

 (9) 

where 
ip  is the predicted

idC , 
ie  is the observed

idC , and 

p and e are the average predicted and observed Cd values, 

respectively. The ideal values for R2 and RMSE are 1 and 1-
10%, respectively. The Nash-Sutcliffe criterion (NSE) values 
vary from 1 to - ∞, so that the range of 0.75-1, 0.36-0.75, 
and less than 0.36 indicate the very good, satisfactory, and 
weak performance of the model, respectively. The data 
used in the models was normalized by equation 10.  

Zn =
Z − Zmin

Zmax − Zmin

 (10) 

in which Z represents the raw data, Zn is the normalized 
data, Zmin is the minimum data, and Zmax is the maximum 
data. 

3. Results and discussion  

In order to analyze the groundwater quality of the Salmas 
plain, GWO-SVR, EA-SVR, and ICA-SVR models along with 
the Wilcox, Schuler, and Piper diagrams are utilized. The 
results of the proposed methods for the training and testing 
stage are based on the performance criteria presented in 
Tables 2 and 3.  

Table 2. Performance of proposed hybrid methods in the training 
stage   

Method R2 RMSE NSE 

EA-SVR 0.952 0.06 0.852 

GWO-SVR 0.981 0.02 0.975 

ICA-SVR 0.912 0.11 0.722 
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 Table 3. Performance of proposed hybrid methods in the test stage  

Method R2 RMSE NSE 

EA-SVR 0.922 0.08 0.790 

GWO-SVR 0.966 0.03 0.950 

ICA-SVR 0.870 0.14 0.702 

After comparing and selecting the superior model, the 
groundwater quality parameters were estimated using 
GWO-SVR, EA-SVR, and ICA-SVR hybrid models (Figures 5 to 
7). Initially, all the available data were standardized; after 
introducing the input structures and finding the optimal 
values of the SVR parameters and applying them, 80% of the 
data was used for training and 20% for testing the model.  

 

a)  

 

b)  

 

c)  

Fig. 5. a to c: Scatterplot of observed and estimated values of GWO-SVR model on the test dataset  
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a)  

 
b)  

 
 

c)  

Fig. 6. a to c: Scatterplot of observed and estimated values of EA-SVR model on the test dataset  
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a)  

 

b) 

 

c) 

Fig. 7. a to c: Scatterplot of observed and estimated values of ICA-SVR model on test dataset   

The results of this study showed that the proposed GWO-
SVR model is able to estimate the groundwater quality 
variables in the Salmas Plain with high efficiency. The results 
of this study are consistent with the results of Isazadeh et 
al. (2016), Mirzavand et al. (2015), Zare-abyaneh et al. 
(2011), and Nourani et al. (2016). They also showed that 
intelligent methods are highly efficient in modeling 
groundwater quality parameters. The amount of EC 
increased by 300 μs/cm during the statistical years, 
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evapotranspiration, and a decline in groundwater level. 
Also, the results showed that the magnitude of EC in the 
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hence, EC can be used as a proper water quality indicator 
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groundwater samples showed that the amount of sodium in 
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quality of the water is good and acceptable for agricultural 
sector. For further investigation, Figures 8 to 10 show the 
Wilcox, Schuler, and Piper diagrams for the hydro-chemical 
analysis of the Salmas plain groundwater.  

 

y = 2.6737x - 0.7079
R² = 0.8462

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5

Es
ti

m
at

ed

Observed

SAR

y = 1.4093x - 188.69
R² = 0.9096

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000

Es
ti

m
at

ed

Observed 

TDS

y = 0.8037x + 609.46
R² = 0.865

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Es
ti

m
at

ed

Observed

EC



  S Emami et al. / Advances in Environmental Technology 2 (2020) 99-110 

 

 107 

 

 
Fig. 8. Wilcox diagram of the Salmas Plain groundwater 

According to the Wilcox diagram, the groundwater of the 
Salmas plain is divided into five classes: C2-S1, C3-S1, C4-S1, 
C4-S3 and C4-S4. As shown in Figure 9, most of the 
groundwater samples of the Salmas plain are in zone B. In 
this zone, the anions CO3

- and HCO3
- and the cations Ca2

+ 
and Mg2

+ are predominant and represent freshwater with 
moderate hardness. Several samples, especially those taken 
from the southeastern part of the plain, are located in zone 
E, in which no anions or cations are predominant. The S9, 
S10, and S13 samples are located in zone C of the diagram, 
which are located between the layers of the gypsum 
interlayers, indicating that the water is saline. According to 
the Piper diagram, the groundwater of the Salmas Plain is 
mostly of good quality and is part of the fresh and very hard 

water. The predominant type of the groundwater is 
calcium-magnesium bicarbonate. According to the Schuler 
diagram, a significant part of the groundwater of the Salmas 
plain is flawless in terms of potable water, and only the 
northern parts of the plain are unsuitable. In general, the 
results of the diagrams show that the groundwater of the 
Salmas Plain is acceptable for drinking purposes. Also, 
according to the Wilcox diagram, the groundwater is in the 
medium to good range.  
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Fig. 9. Piper diagram of the Salmas plain groundwater 

Fig. 10. Schuler diagram of the Salmas plain groundwater  
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4. Conclusions 

In this study, three hybrid models, namely GWO-SVR, EA-
SVR, and ICA-SVR, were proposed to obtain the 
groundwater quality parameters of the Salmas plain. The 
results obtained from these models matched well with the 
observed data, which showed the high performance of 
these methods. The high correlation coefficient (R2) 
obtained from the GWO-SVR model in comparison to the 
other two models indicated the capability and the accuracy 
of the GWO-SVR model for estimating the groundwater 
quality parameters. The results of the hydro-chemical 
analysis of the Salmas plain groundwater by the Wilcox, 
Schuler, and Piper diagrams also indicated that the 
groundwater is acceptable and good for drinking and 
agricultural purposes.  
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