[1] Kaan, C. C., Aziz, A. A., Ibrahim, S., Matheswaran, M., Saravanan, P. (2012) “Heterogeneous photocatalitic oxidation an effective tool for wastewater treatment,” “In: Kumarasamy M., (Ed.), Studies on water management issues”, In Tech Pub., 219-274.
[2] Georges, R., Meyer, S., Kreisel, G. (2004). Photocatalysis in microreactors. Journal of photochemistry and photobiology A: chemistry, 167(2-3), 95–99.
[3] Padoin, N., Soares, C. (2017). An explicit correlation for optimal TiO2 film thickness in immobilized photocatalytic reaction systems. Chemical engineering journal, 310, 381–388.
[4] Zhang, Q., Zhang, Q., Wang, H., Li, Y. (2013). A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. Journal of hazardous materials, 254, 318–324.
[5] Van Grieken, R., Aguado, J., López-Muoz, M. J., Marugán, J. (2002). Synthesis of size-controlled silica-supported TiO2 photocatalysts. Journal of photochemistry and photobiology A: chemistry, 148, 315–322.
[6] Vaiano, V., Sacco, O., Sannino, D., Ciambelli, P., Longo, S., Venditto, V., Guerra, G. (2014). N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. Journal of chemical technology and biotechnology, 89, 1175–1181.
[7] Matsushita, Y., Ohba, N., Kumada, S., Sakeda, K., Suzuki, T., Ichimura, T. (2008). Photocatalytic reactions in microreactors. Chemical engineering journal, 135, S303–S308.
[8] Chen, H. Y., Zahraa, O., Bouchy, M., Thomas, F., Bottero, J. Y. (1994). Adsorption properties of TiO2 related to the photocatalytic degradation of organic contaminants in water. Journal of photochemistry and photobiology A: chemistry, 85, 179–186
[9] Ortiz-Gomez, A., Serrano-Rosales, B., Salaices, M., de Lasa, H. (2007). Photocatalytic oxidation of phenol: reaction network, kinetic modeling, and parameter estimation. Industrial and engineering chemistry research, 46, 7394–7409.
[10] Corbel, S., Charles, G., Becheikh, N., Roques-Carmes, T., Zahraa, O. (2012). Modelling and design of microchannel reactor for photocatalysis. Virtual and physical prototyping, 7, 203–209.
[11] Corbel, S., Becheikh, N., Roques-Carmes, T., Zahraa, O. (2014). Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chemical engineering research and design, 92(4), 657–662.
[12]. Nakamura, H., Li, X., Wang, H., Uehara, M., Miyazaki, M., Shimizu, H., Maeda, H. (2004). A simple method of self-assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions. Chemical engineering journal, 101, 261–268.
[13]. Mills, A., Wang, J., Ollis, D. F. (2006). Dependence of the kinetics of liquid-phase photocatalyzed reactions on oxygen concentration and light intensity. Journal of catalysis, 243, 1–6.
[14] Herrmann, J. M. (2010). Photocatalysis fundamentals revisited to avoid several misconceptions. Applied catalysis B: environmental, 99, 461–468.
[15] Furman, M., Corbel, S., Le Gall, H., Zahraa, O., Bouchy, M. (2007). Influence of the geometry of a monolithic support on the efficiency of photocatalyst for air cleaning. Chemical engineering science, 62, 5312–5316.
[16]
Dionysiou, D. D.,
Suidan, M. T., Baudin, I.,
Laı̂né, J. M. (2002). Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damköhler number.
Applied catalysis B: environmental, 38, 1–16.
[17] Guarlno, G., Ortona, O., Sartorlo, R., Vltagllano, V. (1985). Diffusion, viscosity, and refractivity data on the systems dimethylformamide-water and N methylpyrrolidone-water at 5 ºC. Chemical engineering data, 30, 366–368.
[18] Resende, M., Vieira, P., Sousa Jr., R., Giordano, R., Giordano, R. (2004). Estimation of mass transfer parameters in a Taylor-Couette-Poiseuille heterogeneous reactor. Brazilian journal of chemical engineering, 21(2), 175–184.
[19] Commenge, J.M., Falk, L., Corriou, J.P., Matlosz, M. 2001. Microchannel reactors for kinetic measurement: influence of diffusion and dispersion on experimental accuracy. In Matlosz M., Ehrfeld, W., Baselt, J. P. (Eds.) Microreaction Technology-IMRET 5: Proc. 5th International Conference on Microreaction Technology, Springer, Berlin, 131–140.