[1] Addo, M.A., Darko, E.O., Gordon, C., Nyarko, B.J.B., Gbadago, J.K., Nyarko, E., Affum, H.A., Botwe, B.O. (2012). Evaluation of heavy metals contamination of soil and vegetation in the vicinity of a cement factory in the Volta region, Ghana. International journal of environmental science and technology, 2, 40–50.
[2] Al-Husseini, A.H.E. (2018). Ecological and health risk assessments of trace elements in Al-Shaibah dust, Basrah city, Iraq. Journal of university of Babylon for engineering sciences (JUBES), 26(6), 185-198.
[3] Al-Khashman, O.A., Shawabkeh, A.R. (2006). Metals distribution in soils around the cement factory in Southern Jordan. Environmental pollution, 140, 387-394.
[4] Cutillas-Barreiro, L., Pérez-Rodríguez, P., Gómez-Armesto, A., Fernández-Sanjurjo, M.J., Álvarez-Rodríguez, E., Núñez-Delgado, A., Arias-Estévez, M. Carlos Nóvoa-Muñoz, J. (2016). Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe. Science of the total environment, 562, 179–190.
[6] Department of Environment, Islamic Republic of Iran. (2013). Soil Resources Quality Standards and its Directions, Tehran, Iran. (In Persian)
[7] Fan, Y., Zhu, T., Li, M., He, J., Huang, R. (2017). Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in Central China.
Journal of healthcare engineering. doi.org/10.1155/2017/4124302..
[8] Ghorbani, H., Aghababaei, A. Mirkarimi, H.R. (2013). The evaluation of industrial cement production plant on the environmental pollution using magnetic susceptibility technique. Agricultural sciences, 4, 792-799.
[9] Google LLC. Google Earth. Accessed September 3, 2020.
[10] Han, Y.M., Du, P.X., Cao, J.J., Posmentier, E.S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the total environment, 355, 176–186.
[11] Jafari, A., Ghaderpoori, M., Kamarehi, B. Abdipour, H. (2019). Soil pollution evaluation and health risk assessment of heavy metals around Douroud cement factory, Iran. Environmental earth sciences, 78, 250.
[12]. Kabata-Pendias, A. (2010). Trace elements in soils and plants. Fourth ed. CRC press, Boka Raton.
[13]. Kolo, M.T., Khandaker, M.U., Amin, Y.M., Abdullah, W.H.B., Bradley, D.A. Alzimami, K.S. (2018). Assessment of health risk due to the exposure of heavy metals in soil around mega coal-fired cement factory in Nigeria. Results in physics, 11, 755-762.
[14] Lafta, J.G., Fadhil, H.S., Hussein, A.A. (2013). Heavy metals distribution and the variation of soil properties around Alqaim cement factory in Anbar Governorate – Iraq. International journal of advanced engineering and technology (IJAET), 3(1), 289-291.
[15] Nejadkoorki, F., Nicholson, K. (2012). Integrating passive sampling and interpolation techniques to assess the spatio-temporal variability of urban pollutants using limited data sets. Environmental engineering and management journal, 11(9), 1649-1655.
[16] Ogunkunle, C.O. Fatoba, P.O. (2014). Contamination and spatial distribution of heavy metals in top soil surrounding a mega cement factory. Atmospheric pollution research (APR), 5(2), 270-282.
[17] Olatunde, K.A., Sosanya, P.A., Bada, B.S., Ojekunle, Z.O. Abdussalaam, S.A. (2020). Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Scientific African, 9, e00496.
[18] Qian, J., Shan, X.Q, Wang, Z.J., Tu, Q. (1996). Distribution and plant availability of heavy metals in different particle-size fractions of soil. Science of the total environment, 87, 131–141.
[19] Rezaei, M.R., Sayadi M.H., Khaksarnejad, M. (2016). Contamination of barberry with heavy metals in the vicinity of Qayen Cement Company, Khorasan, Iran, in 2014: A Case study. Journal of occupational health and epidemiology, 3(4), 216-223.
[20] Safari, Y., Delavar, M.A., Zhang, Ch., Noori, Z., Rahmanian, M. (2018). Assessing cadmium risk in wheat grain using soil threshold values. International journal of environmental science and technology, DOI: 10.1007/s13762-017-1422-z.
[21] Solgi, E. (2015). An investigation on Cd and Pb concentrations of soils around the Kurdistan cement factory in Western Iran. Journal of chemical health risks, 5(3), 179–191.
[22] Sposito, G., Lund, L.J., Chang, A.C. (1982). Trace metal chemistry in arid zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil science society of America journal, 46, 260-264.
[23] Westerman, R.L. (ed). (1990). Soil testing and plant analysis. Soil science society of America, Wisconsin.
[24] Yadegarnia Naeini, F., Azimzadeh, H.R., Mosleh Arani, A., Sotoudeh, A. Kiani, B. (2019). Ecological risk assessment of heavy metals from cement factory dust. Environmental health Eengineering and management Journal, 6(2), 129–137.
[25] Zhang, X., Yan, Y., Wadood, S.A., Sun, Q. Guo, B. (2020). Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis. Applied geochemistry, 123, 104776.