[1] Kaufmann, C. (2015). Alternative routes to methyl mercaptan from C 1-compounds, Doctoral dissertation, Technische Universität München.
[2] Yermakova, A., Mashkina, A. (2004). Kinetic model of the reaction of methanol with hydrogen sulfide. Kinetics and catalysis, 45(4), 522-529.
[3] Mashkina, A. (2006). Synthesis of methylmercaptan from methanol and hydrogen sulfide at elevated pressure on an industrial catalyst. Petroleum chemistry, 46(1), 28-33.
[4] Brand, A., Quaschning, V. (2010). U.S. Patent No. 7,687,667. Washington, DC: U.S. Patent and trademark office.
[5] Kudenkov, V., Kiseleva, L., Mashkina, A. (1991). Interaction of methanol with hydrogen sulfide in the presence of K2WO4/Al2O3. Reaction kinetics and catalysis letters, 45(2), 227-233.
[6] Forquy, C., Arretz, E. (1988). Heterogeneous catalysis in mercaptan industrial synthesis. In studies in surface science and catalysis (Vol. 41, pp. 91-104). Elsevier.
[7] Hasenberg, D. M., Refvik, M. D. (2010). U.S. Patent No. 7,645,906. Washington, DC: U.S. Patent and trademark Office.
[8] Mirzaei, A. A., Sarani, R., Azizi, H. R., Vahid, S., Torshizi, H. O. (2015). Kinetics modeling of Fischer–Tropsch synthesis on the unsupported Fe-Co-Ni (ternary) catalyst prepared using co-precipitation procedure. Fuel, 140, 701-710.
[9] Mashkin, V.Y., Kudenkov, V.M., Mashkina, A.V. (1995). Kinetics of the catalytic reaction between methanol and hydrogen sulfide. Industrial and engineering chemistry research, 34(9), 2964-2970.
[10] Eow, J.S. (2002). Recovery of sulfur from sour acid gas: A review of the technology. Environmental progress, 21(3), 143-162.
[11] Khaksar, S.A.M., Zivdar, M., Rahimi, R. (2019). Investigation on the catalytic conversion of hydrogen sulfide to methyl mercaptan as a novel method for gas sweetening: Experimental and modeling approaches. Journal of natural gas science and engineering, 61, 97-105.
[12] Chen, S., Zhang, Y., Lin, L., Jing, X., Yang, Y. (2019). K2WO4/Al2O3 catalysts for methanethiol synthesis from methanol and H2S: effect of catalyst preparation procedure. Reaction kinetics, mechanisms and catalysis, 127(2), 917-930.
[13] Zhang, Y., Chen, S., Wu, M., Fang, W., Yang, Y. (2012). Promoting effect of SiO2 on the K2WO4/Al2O3 catalysts for methanethiol synthesis from methanol and H2S. Catalysis communications, 22, 48-51.
[14] Ereña, J., Arandes, J. M., Bilbao, J., Gayubo, A. G., De Lasa, H. (2000). Conversion of syngas to liquid hydrocarbons over a two-component (Cr2O3–ZnO and ZSM-5 zeolite) catalyst: Kinetic modelling and catalyst deactivation. Chemical engineering science, 55(10), 1845-1855.