[1] Qin, J. J., Lay, W. C. L., Kekre, K. A. (2012). Recent developments and future challenges of forward osmosis for desalination: a review. Desalination and water treatment, 39(1-3), 123-136.
[2] Hey, T., Bajraktari, N., Davidsson, Å, Vogel, J., Madsen, H. T., Hélix-Nielsen, C., Jönsson, K. (2018). Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment. Environmental technology, 39(3), 264-276.
[3] Kim, J., Jeong, K., Park, M. J., Shon, H. K., Kim, J. H. (2015). Recent advances in osmotic energy generation via pressure-retarded osmosis (PRO): a review. Energies, 8(10), 11821-11845.
[4] Hasanoğlu, A., Gül, K. (2016). Concentration of skim milk and dairy products by forward osmosis. Journal of the Turkish Chemical Society Section B: Chemical engineering, 1(1), 149-160.
[5] Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., Hilal, N. (2018). Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 434, 100-120. pressure retarded osmosis (PRO). Separation and purification technology, 156, 856-860.
[6] J McCutcheon, J. R., McGinnis, R. L., Elimelech, M. (2006). Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. Journal of membrane science, 278(1-2), 114-123.
[7] Cath, T. Y., Childress, A. E., Elimelech, M. (2006). Forward osmosis: principles, applications, and recent developments. Journal of membrane science, 281(1-2), 70-87.
[8] Qasim, M., Darwish, N. A., Sarp, S., Hilal, N. (2015). Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, 374, 47-69.
[9] Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., Hilal, N. (2018). Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 434, 100-120
[10] Akther, N., Sodiq, A., Giwa, A., Daer, S., Arafat, H. A., Hasan, S. W. (2015). Recent advancements in forward osmosis desalination: a review. Chemical engineering journal, 281, 502-522.
[11] Tow, E. W., Warsinger, D. M., Trueworthy, A. M., Swaminathan, J., Thiel, G. P., Zubair, S. M., Myerson, A. S. (2018). Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. Journal of membrane science, 556, 352-364.
[12] Li, L., Liu, X. P., Li, H. Q. (2017). A review of forward osmosis membrane fouling: Types, research methods and future prospects. Environmental technology reviews, 6(1), 26-46.
[13] Linares, R. V., Li, Z., Yangali-Quintanilla, V., Ghaffour, N., Amy, G., Leiknes, T., Vrouwenvelder, J. S. (2016). Life cycle cost of a hybrid forward osmosis–low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water research, 88, 225-234.
[14] Phuntsho, S., Hong, S., Elimelech, M., Shon, H. K. (2014). Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. Journal of membrane science, 453, 240-252.
[15] Tan, C. H., Ng, H. Y. (2008). Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. Journal of membrane science, 324(1-2), 209-219.
[16] McCutcheon, J. R., Elimelech, M. (2007). Modeling water flux in forward osmosis: implications for improved membrane design. AIChE journal, 53(7), 1736-1744.
[17] Phillip, W. A., Yong, J. S., & Elimelech, M. (2010). Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental science and technology, 44(13), 5170-5176.
[18] Bae, C., Park, K., Heo, H., Yang, D. R. (2017). Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module. Korean journal of chemical engineering, 34(3), 844-853.
[19] Loeb, S., Titelman, L., Korngold, E., Freiman, J. (1997). Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. Journal of membrane science, 129(2), 243-249.
[20] Qin, J. J., Chen, S., Oo, M. H., Kekre, K. A., Cornelissen, E. R., Ruiken, C. J. (2010). Experimental studies and modeling on concentration polarization in forward osmosis. Water science and technology, 61(11), 2897-2904.
[21] Suh, C., Lee, S. (2013). Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution. Journal of membrane science, 427, 365-374.
[22] Wang, Y., Zhang, M., Liu, Y., Xiao, Q., Xu, S. (2016). Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process. Desalination, 398, 106-113.
[23] Helfer, F., Lemckert, C., Anissimov, Y. G. (2014). Osmotic power with pressure retarded osmosis: theory, performance and trends–a review. Journal of membrane science, 453, 337-358.
[24] Ortega-Bravo, J. C., Ruiz-Filippi, G., Donoso-Bravo, A., Reyes-Caniupán, I. E., Jeison, D. (2016). Forward osmosis: Evaluation thin-film-composite membrane for municipal sewage concentration. Chemical engineering journal, 306, 531-537.
[25] Phuntsho, S., Shon, H. K., Hong, S., Lee, S., Vigneswaran, S. (2011). A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. Journal of membrane science, 375(1-2), 172-181.
[26] Bui, N. N., Arena, J. T., McCutcheon, J. R. (2015). Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter. Journal of membrane science, 492, 289-302.