Efficient removal of Ag+ and Cu2+ using imine-modified/mesoporous silica-coated magnetic nanoparticles

Document Type : Research Paper


1 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

3 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

4 Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran

5 Department of Chemistry, Alzahra University, Tehran, Iran


The present work focuses on the synthesis and application of imine-modified silica-coated magnetic (IM-SCM) nanoparticles. The X-ray diffraction (XRD) tests indicated the presence of highly crystalline cubic spinel magnetite both before and after coating with the silica. The FTIR spectra also proved the successful surface coating and imine-modification of the Fe3O4 nanoparticles. Further investigations were performed to examine the capability of the modified IM-SCM nanoparticles for simultaneous removal of Ag+ and Cu2+ from the water samples. Atomic absorption spectrometry was used for ion determination. The best operating conditions for removing the target ions were a pH=5-9 and a stirring time=30 min. Only 20 mL of 3M nitric acid was used for stripping the ions using the IM-SCM nanoparticles. The resulting data were found to fit well with the Langmuir model, and the maximum capacity of the adsorbent was determined to be 270.3 (± 1.4) mg and 256.4 (± 0.9) mg of Ag+ and Cu2+ /g of IM-SCM, respectively. The adsorbent was successfully used for simultaneously removing the target ions from the wastewater samples. 


Main Subjects

[1] Dubey, S., Banerjee, S., Upadhyay, S. N., Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of molecular liquids, 240, 656-677.
[2] Kanani, N., Bayat, M., Shemirani, F., Ghasemi, J. B., Bahrami. Z., Badiei, A. (2018). Synthesis of magnetically modified mesoporous nanoparticles and their application in simultaneous determination of Pb(II), Cd(II) and Cu(II). Research on chemical intermediates, 44(3), 1688-1709.
[3] Vojoudi, H., Badiei, A., Banaei, A., Bahar, S., Karimi, S., Ziarani, G. M., Ganjali, M. R.  (2017). Extraction of gold, palladium and silver ions using organically modified silica-coated magnetic nanoparticles and silica gel as a sorbent. Microchimica acta, 184(10), 3859-3866.
[4] Vojoudi, H., Badiei, A., Amiri, A., Banaei, A., Mohammadi Ziarani, G., Schenk-Joß, K. (2018). Efficient device for the benign removal of organic pollutants from aqueous solutions using modified mesoporous magnetite nanostructures. Journal of physics and chemistry of solids, 113, 210-219.
[5] Poursaberi, T., Ghanbarnejad, H., Akbar, V. (2012). Selective magnetic removal of Pb(II) from aqueous solution by porphyrin linked-magnetic nanoparticles, Journal of nanostructures, 2(4), 417-426.
[6] Kakaei, A., Kazemeini, M. (2016). Removal of Cd (II) in water samples using modified magnetic Iron oxide nanoparticle. Iranian journal of toxicology, 10, 9-14.
[7] Lam, K. F., Yeung, K. L., Mckay, J. (2007). Selective mesoporous adsorbents for Cr2O72- and Cu2+ separation. Microporous and mesoporous materials, 100, 191-201.
[8] Hajiaghababaei, L., Badaei, A., Ganjali, M. R., Heydari, S., Khaniani, Y., Mohammadi Ziarani, G. (2011). Highly efficient removal and preconcentration of lead and cadmium cations from water and wastewater samples using ethylenediamine functionalized SBA-15. Desalination, 266(1-3), 182-187.
[9] Hajiaghababaei, L., Ghasemi, B., Badiei, A., Goldooz, H., Ganjali, M. R., Mohammadi Ziarani, G. (2012). Aminobenzenesulfonamide functionalized SBA-15 nanoporous molecular sieve: A new and promising adsorbent for preconcentration of lead and copper ions. Journal of environmental science, 24(7), 1347-1354.
[10] Hajiaghababaei, L., Badiei, A., Shojaan, M., Ganjali, M. R., Mohammadi Ziarani, G., Zarabadi-Poor, P. (2012). A novel method for the simple and simultaneous preconcentration of Pb2+, Cu2+ and Zn2+ ions with aid of diethylenetriamine functionalized SBA-15 nanoporous silica compound. International journal of environmental analytical chemistry, 92(12), 1352-1364.
[11] Hajiaghababaei, L., Tajmiri, T., Badiei, A., Ganjali, M. R., Khaniani, Y., Mohammadi Ziarani, G. (2013). Heavy metals determination in water and food samples after preconcentration by a new nanoporous adsorbent. Food chemistry, 141(3), 1916-1922.
[12] Ganjali, M. R., Hajiaghababaei, L., Badaei, A., Saberyan, K., Salavati-Niasari, M., Mohammadi Ziarani, G., Behbahani, S. M. R. (2006). A novel method for fast enrichment and monitoring of hexavalent and trivalent chromium at the ppt level with modified silica MCM-41 and its determination by inductively coupled plasma optical emission spectrometry. Quimica nova, 29(3), 440-443.
[13] Ganjali, M. R., Hajiaghababaei, L., Norouzi, P., Pourjavid, M. R., Badaei, A., Saberyan, K., Ghannadimaragheh, M., Salavati-Niasari, M., Ziarani, G. M. (2005). Novel method for the fast separation and purification of molybdenum(VI) from fission products of uranium with aminofunctionalized Mesoporous molecular sieves (AMMS) modified by dicyclohexyl‐18‐crown‐6 and S‐N tetradentate Schiff's base. Analytical letter, 38(11), 1813-1821.
[14] Ganjali, M. R., Hajiaghababaei, L., Badaei, A., Ziarani G. M., Tarlani, A. (2004). Novel method for fast preconcentration and monitoring of a ppt level of lead and copper with a modified hexagonal mesoporous silica compound and inductively coupled plasma atomic emission spectrometry. Analytical science, 20, 725-729.
[15] Lim, M. H., Stein, A. (1999). Comparative studies of grafting and direct syntheses of inorganic−organic Hybrid Mesoporous materials. Chemistry of materials, 11(11), 3285-3295.
[16] Ho, K. Y., Mckay, G., Yeung, K. L. (2003). Selective adsorbents from ordered mesoporous silica. langmuir, 19(7), 3019-3024.
[17] Hajiaghababaei, L., Abozari, S., Badiei, A., Zarabadi Poor, P., Dehghan Abkenar, S., Ganjali, M. R., Mohammadi Ziarani, G. (2017). Amino ethyl-functionalized SBA-15: A promising adsorbent for anionic and cationic dyes removal. Iranian journal of chemistry and chemical engineering (IJCCE), 36(1), 97-108.
[18] Habibi, S., Hajiaghababaei, L., Badiei, A., Yadavi, M., Abkenar, S. D., Ganjali, M. R., Ziarani, G. M. (2017). Removal of reactive black 5 from water using carboxylic acid-grafted SBA-15 nanorods. Desalination and water treatment, 95, 333-341.
[19] Ju, Y. H., Webb, O. F., Dai, S., Lin, J. S., Barnes, C. E. (2000). Synthesis and characterization of ordered mesoporous anion-exchange inorganic/organic hybrid resins for radionuclide separation. Industrial and engineering chemistry research, 39(2), 550-553.
[20] Lee, B., Bao, L. L., Im, H. J., Dai, S., Hagaman, E. W., Lin, J. S. (2003). Synthesis and characterization of organic− inorganic hybrid mesoporous anion-exchange resins for perrhenate (ReO4-) Anion adsorption. Langmuir, 19(10), 4246-4252.
[21] Fryxell, G. E., Liu, J., Hauser, T. A., Nie, Z., Ferris, K. F., Mattigod, S., Hallen, R. T. (1999). Design and synthesis of selective mesoporous anion traps. Chemistry of materials, 11(8), 2148-2154.
[22] Vojoudi, H., Badiei, A., Amiri, A., Banaei, A., Ziarani, G. M., & Schenk-Joß, K. (2018). Pre-concentration of Zn (II) ions from aqueous solutions using meso-porous pyridine-enrobed magnetite nanostructures. Food chemistry, 257, 189-195.
[23] Vojoudi, H., Badiei, A., Bahar, S., Ziarani, G. M., Faridbod, F., Ganjali, M. R. (2017). A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. Journal of magnetism and magnetic materials, 441, 193-203
[24] Saad, A. H. A., Azzam, A. M., El-Wakeel, S. T., Mostafa, B. B., El-latif, M. B. A. (2018). Removal of toxic metal ions from wastewater using ZnO@ Chitosan core-shell nanocomposite. Environmental nanotechnology, monitoring and management, 9, 67-75.
[25] Wang, X., Guo, Y., Yang, L., Han, M., Zhao, J., Cheng, X. (2012). Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment.Journal of environmental and analytical toxicology, 2(7), 154.
[26] Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American chemical society, 40(9), 1361-1403.
[27] Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of physical chemistry, 57, 385-470.
[28] Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim. URSS, 12, 327-356.
[29] Kikuchi, Y., Qian, Q., Machida, M., Tatsumoto, H. (2006). Effect of ZnO loading to activated carbon on Pb (II) adsorption from aqueous solution. Carbon, 44(2), 195-202.
[30] Jeon, C. (2017). Adsorption of silver ions from industrial wastewater using waste coffee grounds. Korean journal of chemical engineering, 34(2), 384-391.
[31] Jintakosol, T., Nitayaphat, W. (2016). Adsorption of silver (I) from aqueous solution using chitosan/montmorillonite composite beads. Materials research, 19(5), 1114-1121.
[32] Jalilian, N., Ebrahimzadeh, H., Asgharinezhad, A. A., Molaei, K. (2017). Extraction and determination of trace amounts of gold (III), palladium (II), platinum (II) and silver (I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Microchimica acta, 184(7), 2191-2200.