Electrochemical hydrogenation and desulfurization of thiophenic compounds over MoS2 electrocatalyst using different membrane-electrode assembly

Document Type : Research Paper

Authors

1 School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran

2 School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

Abstract

The desulfurization-hydrogenation of thiophene and benzothiophene in hexadecane as a model diesel fuel was studied through a divided cell with the incorporation of a membrane electrode assembly (MEA) under different current density at a constant charge. The reduction of the thiophenic compounds was investigated using a prepared MoS2 nano-electrocatalyst, Nafion (commercial proton exchange membrane), and synthesized sulfonated poly ether ether ketone (SPEEK). Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) were used to characterize the MoS2 electrocatalyst, which confirmed the formation of 23-25 nm ball-like nano-threads of MoS2. Also, the electrocatalyst and/or MEA was electrochemically analyzed by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The gas chromatography-mass spectroscopy (GC-MS) analysis of the reactants and products revealed the direct desulfurization on the thiophene reduction process and the desulfurization along with the desulfurization pathway on the benzothiophene reduction experiment. A maximum desulfurization efficiency of 79.6% at 20 mA cm-2 and 51.5% at 30 mA cm-2 under the constant charge of 300 C was obtained for thiophene using the MoS2-Nafion and MoS2-SPEEK system, respectively. Moreover, a maximum hydrogenation and desulfurization efficiency of 28% and 59.1% occurred at 50 mA cm-2 and 70 mA cm-2, respectively, for the benzohiophene-Nafion system under the constant charge of 400 C. The distribution of the products affirmed that the desulfurization reaction contributed more at a higher current density against the hydrogenation process at a lower current density.

Keywords

Main Subjects


[1] Lam, V., Li, G., Song, C., Chen, J., Fairbridge, C., Hui, R., Zhang, J. (2012). A review of electrochemical desulfurization technologies for fossil fuels. Fuel processing technology, 98, 30-38.
[2] Liu, D., Li, M., Al-Otaibi, R. L., Song, L., Li, W., Li, Q., Yan, Z. (2015). Study on the Desulfurization of High-Sulfur Crude Oil by the Electrochemical Method. Energy and fuels, 29(11), 6928-6934.
[3] Babich, I. V., Moulijn, J. A. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel, 82(6), 607-631.
[4] Zhong, S. T., Zhao, W., Sheng, C., Xu, W. J., Zong, Z. M., Wei, X. Y. (2011). Mechanism for removal of organic sulfur from guiding subbituminous coal by electrolysis. Energy and fuels, 25(8), 3687-3692.
[5] Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis today, 86(1-4), 211-263.
[6] Song, C. (2002). New approaches to deep desulfurization for ultra-clean gasoline and diesel fuels: an overview.Preprints of papers- American chemical society, division of fuel chemistry, 47(2), 438-444.
[7] Di, L., Chenguang, L. (2013). Deep hydrodesulfurization of diesel fuel over diatomite-dispersed NiMoW sulfide catalyst. China petroleum processing and petrochemical technology, 15(4), 38-43.
[8] Kim, T., Ali, S. A., Alhooshani, K., Park, J. I., Al-Yami, M., Yoon, S. H., Mochida, I. (2013). Analysis and deep hydrodesulfurization reactivity of Saudi Arabian gas oils. Journal of industrial and engineering chemistry, 19(5), 1577-1582.
[9] Vogelaar, B. M., Steiner, P., van der Zijden, T. F., van Langeveld, A. D., Eijsbouts, S., Moulijn, J. A. (2007). Catalyst deactivation during thiophene HDS: The role of structural sulfur. Applied catalysis A: general, 318, 28-36.
[10] Wang, H, Prins, R. (2008). HDS of benzothiophene and dihydrobenzothiophene over sulfided Mo/γ-Al2O3. Applied catalysis A: general, 350(2), 191-196.
[11] Wang, J., Zhang, L., Sun, Y., Jiang, B., Chen, Y., Gao, X., Yang, H. (2018). Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel processing technology, 177, 81-88. 4.
[12] Bertleff, B., Claußnitzer, J., Korth, W., Wasserscheid, P., Jess, A., Albert, J. (2017). Extraction coupled oxidative desulfurization of fuels to sulfate and water-soluble sulfur compounds using polyoxometalate catalysts and molecular oxygen. ACS sustainable chemistry and engineering, 5(5), 4110-4118.
[13] Zeelani, G. G., Ashrafi, A., Dhakad, A., Gupta, G., Pal, S. L. (2016). Catalytic oxidative desulfurization of liquid fuels: a review. International research journal of engineering and technology, 3(5) 331-336.
[14] Abbasov, V. M., Ibrahimov, H. C., Mukhtarova, G. S., Rustamov, M. I., Abdullayev, E. (2017). Adsorptive Desulfurization of the Gasoline Obtained from Low-Pressure Hydrocracking of the Vacuum Residue Using a Nickel/Bentonite Catalyst. Energy and fuels, 31(6), 5840-5843.
[15] Ahmed, I, Jhung, S. H. (2016). Adsorptive desulfurization and denitrogenation using metal-organic frameworks. Journal of hazardous materials, 301, 259-276.
[16] Ghanbarlou, H., Rowshanzamir, S., Parnian, M. J., Mehri, F. (2016). Comparison of nitrogen-doped graphene and carbon nanotubes as supporting material for iron and cobalt nanoparticle electrocatalysts toward oxygen reduction reaction in alkaline media for fuel cell applications. International journal of hydrogen energy, 41(33), 14665-14675.
[17] Mehri, F., Sauter, W., Schröder, U., Rowshanzamir, S. (2019). Possibilities and constraints of the electrochemical treatment of thiophene on low and high oxidation power electrodes. Energy and fuels, 33(3), 1901-1909.
[18] Baatar, B., Gan-Erdene, T., Myekhlai, M., Otgonbayar, U., Majaa, C., Turmunkh, Y., Javkhlantugs, N. (2017). Desulfurization of coal using the electrochemical technique in neutral and alkaline media. Energy sources, part A: recovery, utilization, and environmental effects39(15), 1610-1616.
[19] Lam, V., Li, G., Song, C., Chen, J., Fairbridge, C., Hui, R., Zhang, J. (2012). A review of electrochemical desulfurization technologies for fossil fuels. Fuel processing technology, 98, 30-38.
[20] Basile, A., Di Paola, L., Hai, F., Piemonte, V. (Eds.). (2015).Membrane reactors for energy applications and basic chemical production, Woodhead Publishing.
[21] García-Cruz, L., Casado-Coterillo, C, Irabien, Á, Montiel, V, Iniesta, J. (2016). Performance assessment of a polymer electrolyte membrane electrochemical reactor under alkaline conditions – A case study eith the electrooxidation of alcohols. Electrochimica acta, 206, 165-175.
[22] Fonocho, R., Gardner, C. L., Ternan, M. (2012). A study of the electrochemical hydrogenation of o-xylene in a PEM hydrogenation reactor. Electrochimica acta, 75, 171-178.
[23] Liu, L., Liu, H., Huang, W., He, Y., Zhang, W., Wang, C., Lin, H. (2017). Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol. Journal of electroanalytical chemistry, 804, 248-253.
[24] Báez, V., D'elia, L. F., Rodriguez, G., Gandica, Y. (2013). U.S. Patent No. 8,617,477. Washington, DC: U.S. patent and trademark office.
[25] Greaney, M. A., Wang, K., Wang, F. C. (2009). U.S. patent application No. 12/288,565.
[26] D'Elia Camacho, L. F., Puentes, Z., Calderón, J., Lucena, E., Moncada, J., Saavedra, K. (2011). Assisted electrochemical hydroconversion of heterocompounds present in fuel and oil using active hydrogen passing through a Pd membrane. Petroleum science and technology, 29(5), 529-534.
[27] Sedighi, S., Gardner, C. L. (2010). A kinetic study of the electrochemical hydrogenation of ethylene. Electrochimica acta, 55(5), 1701-1708.
[28] Huang, H., Yu, Y. Chung, K. H. (2012). Seasonal storage of electricity by hydrogen in benzene–water system. International journal of hydrogen energy, 37(17), 12798-12804.
[29] Nagarale, R. K., Gohil, G. S., Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in colloid and interface science, 119(2-3), 97-130.
[30] Swier, S., Chun, Y. S., Gasa, J., Shaw, M. T., Weiss, R. A. (2005). Sulfonated poly (ether ketone ketone) ionomers as proton exchange membranes. Polymer engineering and science, 45(8), 1081-1091.
[31] Mikami, T., Miyatake, K., Watanabe, M. (2010). Poly (arylene ether) s containing superacid groups as proton exchange membranes. ACS applied materials and interfaces, 2(6), 1714-1721.
[32] Liu, Y. L. (2012). Developments of highly proton-conductive sulfonated polymers for proton exchange membrane fuel cells. Polymer chemistry, 3(6), 1373-1383.
[33] Basile, A. (Ed.). (2013). Handbook of membrane reactors: fundamental materials science, design and optimisation. Elsevier.
[34] Behrouzifar, A., Rowshanzamir, S., Alipoor, Z., Bazmi, M. (2016). Application of a square wave potentiometry technique for electroreductive sulfur removal from a thiophenic model fuel. International journal of environmental science and technology, 13(12), 2883-2892.
[35] Alipoor, Z., Behrouzifar, A., Rowshanzamir, S., Bazmi, M. (2015). Electrooxidative desulfurization of a thiophene-containing model fuel using a square wave potentiometry technique. Energy and fuels, 29(5), 3292-3301.
[36] Zhao, W, Zhu, H., Zong, Z. M, Xia, J. H, Wei, X. Y. (2005). Electrochemical reduction of pyrite in aqueous NaCl solution. Fuel, 84(2-3), 235-238.
[37] Shu, C., Sun, T., Jia, J., Lou, Z. (2013). Mild process for reductive desulfurization of diesel fuel using sodium borohydride in situ generated via sodium metaborate electroreduction. Industrial and engineering chemistry research, 52(23), 7660-7667.
[38] Huang, H., Yuan, P., Yu, Y., Chung, K. H. (2017). Electrochemical hydrogenation of organic sulfides. International journal of hydrogen energy, 42(29), 18203-18208.
[39] Infantes-Molina, A., Romero-Pérez, A., Eliche-Quesada, D., Mérida-Robles, J., Jiménez-López, A., Rodríguez-Castellón, E. (2012). Transition metal sulfide catalysts for petroleum upgrading–Hydrodesulfurization Reactions. In hydrogenation. In tech open.
[40] Tye, C. T., Smith, K. J. (2006). Catalytic activity of exfoliated MoS2 in hydrodesulfurization, hydrodenitrogenation and hydrogenation reactions. Topics in catalysis, 37(2-4), 129-135.
[41] Kim, H.K. et al. (2016) Preparation of CoMo/Al2O3, CoMo/CeO2, CoMo/TiO2 catalysts using ultrasonic spray pyrolysis for the hydro-desulfurization of 4, 6-dimethyldibenzothiophene for fuel cell applications. International journal hydrogen energy 41, 18846–18857.
[42] Ahn, H.S. and Bard, A.J. (2016) Electrochemical surface interrogation of a MoS2 Hydrogen-eolving catalyst: In situ determination of the surface hydride coverage and the Hydrogen evolution Kinetics. Journal of physical chemistry. Letter. 7, 2748–2752.
[43] Stephenson, T. et al. (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy and environmental science. 7, 209–231.
[44] Gao, Y. P., Huang, K. J., Wu, X., Hou, Z. Q., Liu, Y. Y. (2018). MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. Journal of alloys and compounds, 741, 174-181.
[45] Domínguez-Meister, S., Rojas, T. C., Brizuela, M., Sánchez-López, J. C. (2017). Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings. Science and technology of advanced materials, 18(1), 122-133.
[46] Zhang, X.H. , Wang, C. , Xue, M.Q. , Lin, B.C., Ye, X., Lei, W.N. (2016) Hydrothermal synthesis and charecterization of ultrathin MoS2 nanoshits. Chalcogenide letters. 13, 27–34.
[47] Jin, Q., Chen, B., Ren, Z., Liang, X., Liu, N., Mei, D. (2018) A theoretical study on reaction mechanisms and kinetics of thiophene hydrodesulfurization over MoS2 catalysts. Cataysis. today 312, 158–167.
[48] Farag, H., El-Hendawy, A.A., Sakanishi, K., Kishida, M., Mochida, I. (2009) Catalytic activity of synthesized nanosized molybdenum disulfide for the hydrodesulfurization of dibenzothiophene: Effect of H2S partial pressure. Applied catalysis B: Environmental journal. 91, 189–197.
[50] Karthika, A., Raja, R., Karuppasamy, P., Suganthi, A., Rajarajan, M. (2019) Electrochemical behaviour and voltammetric determination of mercury (II) ion in cupric oxide/poly vinyl alcohol nanocomposite modified glassy carbon electrode. Microchemical journal. 145, 737–744.
[51] McCrum, I.T., Janik, M.J. (2017) Deconvoluting Cyclic Voltammograms To Accurately Calculate Pt Electrochemically Active Surface Area. Journal of  physical Chemistry. C 121, 6237–6245.
[52] Trasatti, S., Petrii, O.A. (1992) Real surface area measurements in electrochemistry. Journal of electroanalytical chemistry. 327, 353–376.