[1] Corma, A., Sauvanaud, L., Mathieu, Y., Al-Bogami, S., Bourane, A., Al-Ghrami, M. (2018). Direct crude oil cracking for producing chemicals: Thermal cracking modeling. Fuel, 211, 726-736.
[2] Rahimi, N., Karimzadeh, R., Jazayeri, S. M., Nia, K. D. (2014). An empirical investigation of the influence of sulfur additives on the catalytic rate of coke deposition and CO formation in the steam cracking of LPG over Incoloy 600 and stainless steel. Chemical engineering journal, 238, 210-218.
[3] Meyers, R. A., 2005, Meyers. Handbook of petrochemicals production processes. McGraw-Hill Prof Med/Tech.
[4] Dhuyvetter, I., Reyniers, M. F., Froment, G. F., Marin, G. B., Viennet, D. (2001). The influence of dimethyl disulfide on naphtha steam cracking. Industrial and engineering chemistry research, 40(20), 4353-4362.
[5] Crynes, B.L., Albright, L.F., Tan, L.F., “Thermal Cracking”, Encyclopedia of Physical Science and Technology, 3rd edition, 2002, Vol. 16, 613-626. Academic Press, New York.
[6] Salari, D., Niaei, A., Shoja, M. R., Nabavi, R. (2010). Coke formation reduction in the steam cracking of naphtha on industrial alloy steels using sulfur-based inhibitors. International journal of chemical reactor engineering, 8(1) 1-20.
[7] Ito, T., Miyaji, T., Nakagawa, T., Tomizuka, N. (2007). Degradation of dimethyl disulfide by Pseudomonas fluorescens strain 76. Bioscience, biotechnology, and biochemistry, 71(2), 366-370.
[8] Reyniers, M. F. S., Froment, G. F. (1995). Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons. Industrial and engineering chemistry research, 34(3), 773-785.
[9] Yuan, B., Li, J., Du, W., Qian, F. (2016). Study on co-cracking performance of different hydrocarbon mixture in a steam pyrolysis furnace. Chinese journal of chemical engineering, 24(9), 1252-1262.
[10] Trimm, D. L., Turner, C. J. (1981). The pyrolysis of propane. II. Effect of hydrogen sulphide. Journal of chemical technology and biotechnology, 31(1), 285-289.