[1] Mehrabi, N., Soleimani, M., Yeganeh, M. M., Sharififard, H. (2015). Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. RSC Advances,5(64), 51470-51482.
[2] Sharififard, H., Soleimani, M. (2015). Performance comparison of activated carbon and ferric oxide-hydroxide–activated carbon nanocomposite as vanadium (V) ion adsorbents. RSC Advances,5(98), 80650-80660
[3] Bergaoui, M., Nakhli, A., Benguerba, Y., Khalfaoui, M., Erto, A., Soetaredjo, F. E Ernst, B. (2018). Novel insights into the adsorption mechanism of methylene blue onto organo-bentonite: Adsorption isotherms modeling and molecular simulation. Journal of molecular liquids,272, 697-707.
[4] Hwang, J., Joss, L., Pini, R. (2019). Measuring and modelling supercritical adsorption of CO2 and CH4 on montmorillonite source clay. Microporous and Mesoporous Materials,73, 107-121.
[5] Salam, M. A., Kosa, S. A., Al-Beladi, A. A. (2017). Application of nanoclay for the adsorptive removal of Orange G dye from aqueous solution. Journal of molecular liquids,241, 469-477.
[6] Almasri, D. A., Rhadfi, T., Atieh, M. A., McKay, G., Ahzi, S. (2018). High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chemical engineering journal,335, 1-12.
[7] Mishra, A., Mehta, A., Sharma, M., Basu, S. (2017). Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/Clay nanocomposites: A comparison study of different type of clays. Journal of alloys and compounds,694, 574-580.
[8] Mishra, A., Mehta, A., Kainth, S., Basu, S. (2018). Effect of different plasmonic metals on photocatalytic degradation of volatile organic compounds (VOCs) by bentonite/M-TiO2 nanocomposites under UV/visible light. Applied clay science,153, 144-153.
[9] Razzaz, A., Ghorban, S., Hosayni, L., Irani, M., Aliabadi, M. (2016). Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. Journal of the Taiwan institute of chemical engineers,58, 333-343.
[10] Ismail, A. A., El-Midany, A. A., Ibrahim, I. A., Matsunaga, H. (2008). Heavy metal removal using SiO2-TiO2 binary oxide: experimental design approach. Adsorption, 14(1), 21-29.
[11] Lee, Y. C., Yang, J. W. (2012). Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. Journal of industrial and engineering chemistry,18(3), 1178-1185.
[12] Bouazizi, A., Breida, M., Achiou, B., Ouammou, M., Calvo, J. I., Aaddane, A., Younssi, S. A. (2017). Removal of dyes by a new nano–TiO2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite. Applied clay science,149, 127-135.
[13] Nwankwo, U., Bucher, R., Ekwealor, A. B. C., Khamlich, S., Maaza, M., Ezema, F. I. (2019). Synthesis and characterizations of rutile-TiO2 nanoparticles derived from chitin for potential photocatalytic applications. Vacuum,161, 49-54.
[14] MiarAlipour, S., Friedmann, D., Scott, J., Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of hazardous materials,341, 404-423.
[15] Yin, X., Meng, X., Zhang, Y., Zhang, W., Sun, H., Lessl, J. T., Wang, N. (2018). Removal of V (V) and Pb (II) by nanosized TiO2 and ZnO from aqueous solution. Ecotoxicology and environmental safety, 164, 510-519.
[16] Sharma, M., Singh, J., Hazra, S., Basu, S. (2019). Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ ZnO monoliths: adsorption and kinetic studies. Microchemical journal,145, 105-112.
[17] Chen, J., Wang, N., Liu, Y., Zhu, J., Feng, J., Yan, W. (2018). Synergetic effect in a self-doping polyaniline/TiO2 composite for selective adsorption of heavy metal ions. Synthetic metals,245, 32-41.
[18] World Health Organization, Geneva. (2010). WHO. Guidelines for drinking water Quality: Recommendations.
[19] Losi, M. E., Amrhein, C., Frankenberger, W. T. (1994). Environmental biochemistry of chromium. In reviews of environmental contamination and toxicology (pp. 91-121). Springer, New York, NY.
[20] Montgomery, D.C., 1991. Desing and Analysis of Experiments, 3rd ed. Wiley, New York.
[21] Fischer, R.A., (1925). Statistical methods for research workers, Oliver and Boyd, London.
[22] Sharififard, H., Nabavinia, M., Soleimani, M. (2017). Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution. Advances in environmental technology,2(4), 215-227.
[23] Bayat, B. (2002). Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel (II), copper (II) and zinc (II). Journal of hazardous materials,95(3), 251-273.
[24] Azouaou, N., Sadaoui, Z., Djaafri, A., Mokaddem, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. Journal of hazardous materials,184(1-3), 126-134.
[25] Wang, F. Y., Wang, H., Ma, J. W. (2010). Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of hazardous materials,177(1-3), 300-306.
[26] Van, H. T., Nguyen, L. H., Nguyen, X. H., Nguyen, T. H., Nguyen, T. V., Vigneswaran, S., Tran, H. N. (2018). Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies. Journal of environmental management, 241, 535-548.
[27] Jeon, C. (2018). Adsorption behavior of cadmium ions from aqueous solution using pen shells. Journal of industrial and engineering chemistry,58, 57-63.
[28] Asuquo, E. D., Martin, A. D. (2016). Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: characterisation, kinetic and isotherm studies. Journal of environmental chemical engineering,4(4), 4207-4228.