[1] Ali, S. M., Galal, A., Atta, N. F. (2017). Toxic heavy metal ions removal from wastewater by nano-magnetite: Case study Nile river water. Egyptian Journal of Chemistry, 60(4), 601-612.
[2] Ozdes, D., Gundogdu, A., Kemer, B., Duran, C., Senturk, H. B., Soylak, M. (2009). Removal of Pb (II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study. Journal of hazardous materials, 166(2-3), 1480-1487.
[3] Tavakoli, O., Goodarzi, V., Saeb, M. R., Mahmoodi, N. M., Borja, R. (2017). Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. Journal of hazardous materials, 334, 256-266.
[4] Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chemical research in toxicology, 24(10), 1617-1629.
[5] Genç-Fuhrman, H., Mikkelsen, P. S., Ledin, A. (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water research, 41(3), 591-602.
[6] Jha, M. K., Kumar, V., Jeong, J., Lee, J. C. (2012). Review on solvent extraction of cadmium from various solutions. Hydrometallurgy, 111, 1-9.
[7] Choi, S. Y., Nguyen, V. T., Lee, J. C., Kang, H., Pandey, B. D. (2014). Liquid–liquid extraction of Cd (II) from pure and Ni/Cd acidic chloride media using Cyanex 921: A selective treatment of hazardous leachate of spent Ni–Cd batteries. Journal of hazardous materials, 278, 258-266.
[8] Purkayastha, D., Mishra, U., Biswas, S. (2014). A comprehensive review on Cd (II) removal from aqueous solution. Journal of water process engineering, 2, 105-128.
[9] Bhatnagar, A., Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical engineering journal, 157(2-3), 277-296.
[10] Bhatnagar, A., Kumar, E., Sillanpää, M. (2011). Fluoride removal from water by adsorption—a review. Chemical engineering journal, 171(3), 811-840.
[11] Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—a review. Journal of hazardous materials, 263, 322-333.
[12] Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of hazardous materials, 215, 272-279.
[13] Fan, L., Luo, C., Lv, Z., Lu, F., Qiu, H. (2011). Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. Journal of hazardous materials, 194, 193-201.
[14] Wang, Y., Li, L., Luo, C., Wang, X., Duan, H. (2016). Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. International journal of biological macromolecules, 86, 505-511.
[15] Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical engineering journal, 162(2), 487-494.
[16] Qu, J. B., Shao, H. H., Jing, G. L., Huang, F. (2013). PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: preparation, characterization and cytotoxicity studies. Colloids and surfaces B: Biointerfaces, 102, 37-44.
[17] Ashokkumar, M., Sumukh, K. M., Murali, R., Narayanan, N. T., Ajayan, P. M., Thanikaivelan, P. (2012). Collagen–chitosan biocomposites produced using nanocarbons derived from goatskin waste. Carbon, 50(15), 5574-5582.
[18] Chung, E. Y., Kim, H. M., Lee, G. H., Kwak, B. K., Jung, J. S., Kuh, H. J., Lee, J. (2012). Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohydrate polymers, 90(4), 1725-1731.
[19] Lee, H. U., Song, Y. S., Suh, Y. J., Park, C., Kim, S. W. (2012). Synthesis and characterization of glucose oxidase–core/shell magnetic nanoparticle complexes into chitosan bead. Journal of molecular catalysis B: Enzymatic, 81, 31-36.
[20] Das, D., Das, N. (2014). Sunlight mediated diesel degradation under saline conditions using ionic silver coated sand via nanoreduction: Use of impregnated form of thiourea modified chitosan membranes for ex situ application. Journal of hazardous materials, 278, 597-609.
[21] Reddy, D. H. K., Lee, S. M. (2013). Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in colloid and interface science, 201, 68-93.
[22] Pan, J., Yao, H., Li, X., Wang, B., Huo, P., Xu, W., Yan, Y. (2011). Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2, 4, 6-trichlorophenol from aqueous solutions. Journal of hazardous materials, 190(1-3), 276-284.
[23] Yan, H., Yang, L., Yang, Z., Yang, H., Li, A., Cheng, R. (2012). Preparation of chitosan/poly (acrylic acid) magnetic composite microspheres and applications in the removal of copper (II) ions from aqueous solutions. Journal of hazardous materials, 229, 371-380.
[24] Li, J., Zhang, Y., Shen, F., Yang, Y. (2012). Comparison of magnetic carboxymethyl chitosan nanoparticles and cation exchange resin for the efficient purification of lysine-tagged small ubiquitin-like modifier protease. Journal of chromatography B, 907, 159-162.
[25] Chauhan, N., Narang, J., Pundir, C. S. (2012). An amperometric glutathione biosensor based on chitosan–iron coated gold nanoparticles modified Pt electrode. International journal of biological macromolecules, 51(5), 879-886.
[26] Liu, L., Xiao, L., Zhu, H., Shi, X. (2012). Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchimica acta, 178(3-4), 413-419.
[27] Ma, W., Ya, F. Q., Han, M., Wang, R. (2007). Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. Journal of hazardous materials, 143(1-2), 296-302.
[28] Miretzky, P., Cirelli, A. F. (2009). Hg (II) removal from water by chitosan and chitosan derivatives: a review. Journal of hazardous materials, 167(1-3), 10-23.
[29] Liu, X., Hu, Q., Fang, Z., Zhang, X., Zhang, B. (2008). Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 25(1), 3-8.
[30] Oroujzadeh, N., Rezaei Jamalabadi, S. (2016). Fabrication of a novel magnetic nanocomposite to remove Cu (II) ions from contaminated water. Phosphorus, Sulfur, and Silicon and the related elements, 191(11-12), 1501-1503.
[31] Kim, H. R., Jang, J. W., Park, J. W. (2016). Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. Journal of hazardous materials, 317, 608-616.
[32] Monier, M., Ayad, D. M., Abdel-Latif, D. A. (2012). Adsorption of Cu (II), Cd (II) and Ni (II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. Colloids and Surfaces B: Biointerfaces, 94, 250-258.
[33] Wu, X., Hu, L. (2016). Design and synthesis of peptide conjugates of phosphoramide mustard as prodrugs activated by prostate-specific antigen. Bioorganic and medicinal chemistry, 24(12), 2697-2706.
[34] Gholivand, K., Oroujzadeh, N., Erben, M. F., Della Védova, C. O. (2009). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1, 3, 2-diazaphospholidine-2, 4, 5-triones. Polyhedron, 28(3), 541-547.
[35] Gholivand, K., Oroujzadeh, N., Afshar, F. (2010). New organotin (IV) complexes of nicotinamide, isonicotinamide and some of their novel phosphoric triamide derivatives: Syntheses, spectroscopic study and crystal structures. Journal of organometallic chemistry, 695(9), 1383-1391.
[36] Oroujzadeh, N., Gholivand, K., Jamalabadi, N. R. (2017). New carbacylamidophosphates containing nicotinamide: Synthesis, crystallography and antibacterial activity. Polyhedron, 122, 29-38.
[37] Gholivand, K., Molaei, F., Oroujzadeh, N., Mobasseri, R., Naderi-Manesh, H. (2014). Two novel Ag (I) complexes of N-nicotinyl phosphoric triamide derivatives: Synthesis, X-ray crystal structure and in vitro antibacterial and cytotoxicity studies. Inorganica chimica acta, 423, 107-116.
[38] Oroujzadeh, N., Rezaei Jamalabadi, S. (2016). New nanocomposite of N-nicotinyl, N′, N ″-bis (tert-butyl) phosphorictriamide based on chitosan: Fabrication and antibacterial investigation. Phosphorus, Sulfur, and Silicon and the related elements, 191(11-12), 1572-1573.
[39] Gholivand, K., Oroujzadeh, N., Shariatinia, Z. (2010). N-2, 4-dichlorobenzoyl phosphoric triamides: Synthesis, spectroscopic and X-ray crystallography studies. Journal of chemical sciences, 122(4), 549-559.
[40] Gholivand, K., Oroujzadeh, N., Shariatinia, Z. (2010). New phosphoric triamides: Chlorine substituents effects and polymorphism. Heteroatom chemistry: An international journal of main group elements, 21(3), 168-180.
[41] Oroujzadeh, N., Gholivand, K. (2016). New organophosphorus compounds containing nicotinamide: Synthesis, structure and DFT calculations. Journal of the Iranian chemical society, 13(5), 847-857.
[42] Gholivand, K., Oroujzadeh, N., Rajabi, M. (2012). New N-nicotinyl and N-isonicotinyl, N′, N ″-diaryl phosphorictriamides with new Er (III) complex: synthesis, spectroscopic study and crystal structures. Journal of the Iranian chemical society, 9(6), 865-876.
[43] Monier, M., Ayad, D. M., Wei, Y., Sarhan, A. A. (2010). Adsorption of Cu (II), Co (II), and Ni (II) ions by modified magnetic chitosan chelating resin. Journal of hazardous materials, 177(1-3), 962-970.
[44] Loh, K. S., Lee, Y., Musa, A., Salmah, A., Zamri, I. (2008). Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2, 4-dichlorophenoxyacetic acid. Sensors, 8(9), 5775-5791.
[45] Oroujzadeh, N. (2017). New Chitosan/Ag/ Carbacylamidophosphate nanocomposites: Preparation and antibacterial study. Advances in environmental technology, 3, 151-157.
[46] Wang, N., Xu, X., Li, H., Zhai, J., Yuan, L., Zhang, K., Yu, H. (2016). Preparation and application of a xanthate-modified thiourea chitosan sponge for the removal of Pb (II) from aqueous solutions. Industrial and engineering chemistry research, 55(17), 4960-4968.
[47] Monier, M., Ayad, D. M., Abdel-Latif, D. A. (2012). Adsorption of Cu (II), Cd (II) and Ni (II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. Colloids and Surfaces B: Biointerfaces, 94, 250-258.
[48] Yang, G., Tang, L., Lei, X., Zeng, G., Cai, Y., Wei, X., Zhang, Y. (2014). Cd (II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Applied surface science, 292, 710-716.