[1] Alikhani, J., Shayegan, J., Akbari, A. (2015). Risk assessment of hydrocarbon contaminant transport in vadose zone as it travels to groundwater table: A case study. Advances in environmental technology, 2, 77-84.
[2] Panda, S. K., Kar, R. N., Panda, C. R. (2013). Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment. International journal of environmental sciences, 3(5), 1314-1321.
[3] Hazen, T. C., Prince, R. C., Mahmoudi, N. (2016). Marine oil biodegradation. Environmental science and technology, 50(2), 2121–2129
[4] Srivastava, J., Naraian, R., Kalra, S. J. S., Chandra, H. (2014). Advances in microbial bioremediation and the factors influencing the process. International Journal of environmental science and technology, 11(6), 1787-1800.
[5] Esmaeili, A. K. B. A. R., Sadeghi, E. (2014). The efficiency of Penicillium commune for bioremoval of industrial oil. International journal of environmental science and technology, 11(5), 1271-1276.
[6] Mani, D., Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International journal of environmental science and technology, 11(3), 843-872.
[7] Lai, C. C., Huang, Y. C., Wei, Y. H., Chang, J. S. (2009). Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of hazardous materials, 167(1-3), 609-614.
[8] Subathra, M. K., Immanuel, G., Suresh, A. H. (2013). Isolation and Identification of hydrocarbon degrading bacteria from Ennore creek. Bioinformation, 9(3), 150.
[9] Geetha, S. J., Joshi, S. J., Kathrotiya, S. (2013). Isolation and characterization of hydrocarbon degrading bacterial isolate from oil contaminated sites. APCBEE procedia, 5, 237-241.
[10]Rashedi, H. (2015). Indigenous production of biosurfactant and degradation of crude oil. Advances in environmental technology, 1(1), 11-16.
[11] Kostka, J. E., Prakash, O., Overholt, W. A., Green, S., Freyer, G., Canion, A., Huettel, M. (2011). Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Applied and environmental microbiology, 77(22), 7962-7974.
[12] Liu, J., Bacosa, H. P., Liu, Z. (2017). Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the northern Gulf of Mexico. Frontiers in microbiology, 7, Article 2131, 1-14.
[13] Liu, Z., Liu, S. (2015). High phosphate concentrations accelerate bacterial peptide decomposition in hypoxic bottom waters of the northern Gulf of Mexico. Environmental science and technology, 50(2), 676-684.
[14] Schedler, M., Hiessl, R., Juárez, A. G. V., Gust, G., Müller, R. (2014). Effect of high pressure on hydrocarbon-degrading bacteria. AMB express, 4(1), 77-84.
[15] Bacosa, H. P., Liu, Z., Erdner, D. L. (2015). Natural sunlight shapes crude oil-degrading bacterial communities in Northern Gulf of Mexico surface waters. Frontiers in microbiology, 6, Article 1325, 1-14.
[16] Dubinsky, E. A., Conrad, M. E., Chakraborty, R., Bill, M., Borglin, S. E., Hollibaugh, J. T., Tom, L. M. (2013). Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental science and technology, 47(19), 10860-10867.
[17] Shokrollahzadeh, S., Azizmohseni, F., Golmohamad, F. (2015). Characterization and kinetic study of PAH–degrading Sphingopyxis ummariensis bacteria isolated from a petrochemical wastewater treatment plant. Advances in environmental technology, 1(1), 1-9.
[18] Bao, M. T., Wang, L. N., Sun, P. Y., Cao, L. X., Zou, J., Li, Y. M. (2012). Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Marine pollution bulletin, 64(6), 1177-1185.
[19] Hassanshahian, M., Emtiazi, G., Cappello, S. (2012). Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Marine pollution bulletin, 64(1), 7-12.
[20] Kurjogi, M. M., Kaliwal, B. B. (2018). Rapid and sensitive method for detection of Staphylococcus aureus enterotoxin genes in milk sample. Journal of applied biology and biotechnology Vol, 6(2), 15-19.
[21] Palacio-Bielsa, A., Pothier, J. F., Roselló, M., Duffy, B., López, M. M. (2012). Detection and identification methods and new tests as developed and used in the framework of COST 873 for bacteria pathogenic to stone fruits and nuts. Journal of plant pathology, 94(1sup), 1-135.
[22] Taylor, W. I., Achanzar, D. (1972). Catalase test as an aid to the identification of Enterobacteriaceae. Applied microbiology, 24(1), 58-61.
[23] Thirst, M. L. (1957). Gelatin liquefaction: a microtest. Journal of general microbiology, 17(2), 396-400.
[24] Clarke, P. H. (1953). Hydrogen sulphide production by bacteria. Journal of general microbiology, 8, 397-407.
[25] Pradhan, P. (2015). Tween 80 hydrolysis test. Mocrobiology and Infectious Diseases, http://microbesinfo.com/2015/03/tween-80-hydrolysis-test/.
[26] Alegbeleye, O. O., Opeolu, B. O., Jackson, V. (2017). Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds:(acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Brazilian journal of microbiology, 48(2), 314-325.
[27] Parach, A., Rezvani, A., Assadi, M. M., Akbari-Adergani, B. (2017). Biodegradation of heavy crude oil using Persian Gulf autochthonous bacterium. International journal of environmental research, 11(5-6), 667-675.
[28] Ansari, N., Hassanshahian, M., Ravan, H. (2018). Study the Microbial Communities’ Changes in Desert and Farmland Soil After Crude Oil Pollution. International journal of environmental research, 12(3), 391-398.
[29] Toledo, F. L., Calvo, C., Rodelas, B., González-López, J. (2006). Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Systematic and applied microbiology, 29(3), 244-252.
[30] Hua, X., Wu, Z., Zhang, H., Lu, D., Wang, M., Liu, Y., Liu, Z. (2010). Degradation of hexadecane by Enterobacter cloacae strain TU that secretes an exopolysaccharide as a bioemulsifier. Chemosphere, 80(8), 951-956.
[31] Nkem, B. M., Halimoon, N., Yusoff, F. M., Johari, W. L. W., Zakaria, M. P., Medipally, S. R., Kannan, N. (2016). Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia.Marine pollution bulletin,107(1), 261-268.
[32] Shao, Y., Wang, Y., Wu, X., Xu, X., Kong, S., Tong, L., Li, B. (2015). Biodegradation of PAHs by Acinetobacter isolated from karst groundwater in a coal-mining area. Environmental earth sciences, 73(11), 7479-7488.
[33] Moscoso, F., Deive, F. J., Longo, M. A., Sanromán, M. A. (2015). Insights into polyaromatic hydrocarbon biodegradation by Pseudomonas stutzeri CECT 930: operation at bioreactor scale and metabolic pathways. International journal of environmental science and technology, 12(4), 1243-1252.
[34] Bisht, S., Pandey, P., Kaur, G., Aggarwal, H., Sood, A., Sharma, S, Bisht, N. S. (2014). Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. European journal of soil biology, 60, 67-76.
[35] Barin, R., Talebi, M., Biria, D., Beheshti, M. (2014). Fast bioremediation of petroleum-contaminated soils by a consortium of biosurfactant/bioemulsifier producing bacteria. International journal of environmental science and technology, 11(6), 1701-1710.
[36] Simard, R. G., Hasegawa, I., Bandaruk, W., Headington, C. E. (1951). Infrared spectrophotometric determination of oil and phenols in water. Analytical chemistry, 23(10), 1384-1387.
[37] Siddiqui, N., Rauf, A., Latif, A., Mahmood, Z. (2017). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). Journal of Taibah university medical sciences, 12(4), 360-363.