Cu decorated multiwalled carbon nanotubes: Application to electrocatalytic oxidation and determination of 4-nitrophenol in river water samples by square-wave voltammetry

Document Type : Research Paper

Authors

1 Department of Chemistry, Razi University, Kermanshah, Iran

2 Depatment of Chemistry, Razi University, Kermanshah, Iran

3 Departmen of Chemistry, Razi University, Kermanshah, Iran

Abstract

A simple and fast electrochemical method was described and evaluated for the determination of hazardous compound, 4-nitrophenol. In this work, trace amounts of 4- nitrophenol were determined by square – wave voltammetry. A glassy carbon electrode was modified with multi-walled carbon nanotubes and copper nanoparticles. A synergistic effect was observed between Cu nanoparticles and carbon nanotubes which resulted in enhanced oxidation peak current of 4-nitrophenol. The modified electrode showed more sensitivity towards 4-nitrophenol compared to unmodified one. A wide linear concentration range from 0.2 to 298.0 μM was obtained for 4-nitrophenol with a detection limit of 0.06 μM. Reproducibility and repeatability of the method were evaluated for determination of 4-nitrophenol (0.1 mM) as 3.47% and 2.30%, respectively (relative standard deviation, RSD %), which are acceptable. The method was applied to the analysis of 4- nitrophenol (22.2 μM) in spiked river water samples, successfully. Simplicity, sensitivity, selectivity and high efficiency of the proposed method can be used in routine analysis of trace amounts of 4-nitrophenol in polluted waters.

Keywords

Main Subjects


[1] Hallas, L. E., Alexander, M. (1983). Microbial transformation of nitroaromatic compounds in sewage effluent. Applied and environmental microbiology, 45(4), 1234-1241.
[2] Munnecke, D. M. (1976). Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Applied and environmental microbiology, 32(1), 7-13.
[3] Yin, H., Zhou, Y., Ai, S., Liu, X., Zhu, L., Lu, L. (2010). Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchimica acta, 169(1-2), 87-92.
[4] Whitacre, D. M. (Ed.). (2009). Reviews of environmental contamination and toxicology. Springer.
[5] Lanouette, K. H. (1977). Treatment of phenolic wastes. Chemical engineering, 84(22), 99-106.
[6] Lipczynska-Kochany, E. (1991). Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere, 22(5-6), 529-536.
[7] Kusakabe, S., Ohara, M. (1991). Multiple-wavelength data treatment of ultraviolet—visible spectra for 1: 1 electron donor—acceptor adducts of p-nitrophenol in heptane. Analytica chimica acta, 242, 57-64.
[8] Nistor, C., Oubiña, A., Marco, M. P., Barceló, D., Emnéus, J. (2001). Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Analytica chimica acta, 426(2), 185-195.
[9] Ribeiro, R. S., Silva, A. M., Gomes, H. T., Faria, J. L. (2015). High-performance liquid chromatography as a tool to evaluate the performance of the catalytic wet peroxide oxidation of 4-nitrophenol: pre-validation of analytical methods. U. Porto journal of engineering, 1(1), 50-66.
[10] Thompson, M. J., Ballinger, L. N., Cross, S. E., Roberts, M. S. (1996). High-performance liquid chromatographic determination of phenol, 4-nitrophenol, β-naphthol and a number of their glucuronide and sulphate conjugates in organ perfusate. Journal of chromatography B: Biomedical sciences and applications, 677(1), 117-122.
[11] Gerent, G. G., Spinelli, A. (2017). Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. Journal of hazardous materials, 330, 105-115
[12] Giribabu, K., Haldorai, Y., Rethinasabapathy, M., Jang, S. C., Suresh, R., Cho, W. S., Narayanan, V. (2017). Glassy carbon electrode modified with poly (methyl orange) as an electrochemical platform for the determination of 4-nitrophenol at nanomolar levels. Current applied physics, 17(8), 1114-1119.
[13] Thirumalraj, B., Rajkumar, C., Chen, S. M., Lin, K. Y. (2017). Determination of 4-nitrophenol in water by use of a screen-printed carbon electrode modified with chitosan-crafted ZnO nanoneedles. Journal of colloid and interface science, 499, 83-92.
[14] Singh, S., Kumar, N., Kumar, M., Agarwal, A., Mizaikoff, B. (2017). Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical engineering journal, 313, 283-292.
[15] Zeng, Y., Zhou, Y., Zhou, T., Shi, G. (2014). A novel composite of reduced graphene oxide and molecularly imprinted polymer for electrochemical sensing 4-nitrophenol. Electrochimica Acta, 130, 504-511.
[16] Santhiago, M., Henry, C. S., Kubota, L. T. (2014). Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochimica Acta, 130, 771-777.
[17] Yang, C. (2004). Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchimica Acta, 148(1-2), 87-92.
[18] Wu, T., Zhang, L., Gao, J., Liu, Y., Gao, C., Yan, J. (2013). Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. Journal of materials chemistry A, 1(25), 7384-7390.
[19] Zhang, Y., Wu, L., Lei, W., Xia, X., Xia, M., Hao, Q. (2014). Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochimica Acta, 146, 568-576.
[20] Xu, G., Yang, L., Zhong, M., Li, C., Lu, X., Kan, X. (2013). Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles Microchimica Acta, 180(15-16), 1461-1469.
[21] Tang, Y., Huang, R., Liu, C., Yang, S., Lu, Z., Luo, S. (2013). Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. Analytical methods, 5(20), 5508-5514.
[22] Zhang, T., Lang, Q., Yang, D., Li, L., Zeng, L., Zheng, C., Liu, A. (2013). Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochimica Acta, 106, 127-134.
[23] Ahammad, A., Lee, J.-J. Rahman, M.A., (2009). Electrochemical sensors based on carbon nanotubes. Sensors, 9, 2289-2319.
[24] Welch, C. M., Compton, R. G. (2006). The use of nanoparticles in electroanalysis: a review. Analytical and bioanalytical chemistry, 384(3), 601-619.
[25] Oztekin, Y., Tok, M., Bilici, E., Mikoliunaite, L., Yazicigil, Z., Ramanaviciene, A., Ramanavicius, A. (2012). Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochimica Acta, 76, 201-207.
[26] Goyal, R. N., Gupta, V. K., Oyama, M., & Bachheti, N. (2005). Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochemistry communications7(8), 803-807.
[27] Male, K. B., Hrapovic, S., Liu, Y., Wang, D., & Luong, J. H. (2004). Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta, 516(1-2), 35-41
[28] Batchelor-McAuley, C., Du, Y., Wildgoose, G. G., Compton, R. G. (2008). The use of copper (II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide. Sensors and actuators B: Chemical, 135(1), 230-235.
[29] Wang, H., Huang, Y., Tan, Z., Hu, X. (2004). Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Analytica chimica Acta, 526(1), 13-17.
[30] Prabakaran, E., Prabhu, M., Rani, V. S. V., Jesudurai, D. (2016). Linear Sweep Voltammetry Determination of L-Tryptophan and L-Tyrosine using Copper Nanoparticles Coated on Poly (Ortho-Phenylenediamine) Nanocomposite Modified Glassy Carbon Electrode. Journal of nanoscience and technology, 109-114.
[31] Kassem, M. A., Hazazi, O. A., Ohsaka, T., Awad, M. I. (2016). Electroanalysis of pyridoxine at copper nanoparticles modified polycrystalline gold electrode. Electroanalysis, 28(3), 539-545
[32] Zheng, S., Huang, Y., Cai, J., Guo, Y. (2013). Nano-copper-MWCNT-modified glassy carbon electrode for selective detection of dopamine. International journal of electrochemical science, 8, 12296-12307.
[33] Heydari, H., Gholivand, M. B., Abdolmaleki, A. (2016). Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: an ultra-sensitive hydrazine sensor. Materials science and engineering: C, 66, 16-24
[34] Lu, L. M., Zhang, X. B., Shen, G. L., Yu, R. Q. (2012). Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Analytica chimica acta, 715, 99-104.
[35] Chen, W., Duan, L., Zhu, D. (2007). Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental science and technology, 41(24), 8295-8300.
[36] Timberlake, C. F. (1959). 561. Complex formation between copper and some organic acids, phenols, and phenolic acids occurring in fruit. Journal of the chemical society (Resumed), 2795-2798.
[37] Bard, A. J., Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications. Department of Chemistry and Biochemistry University of Texas at Austin.
[38] Bard, A. J., Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications. Department of Chemistry and Biochemistry University of Texas at Austin.
[39] Wiench, P., Grzyb, B., González, Z., Menéndez, R., Handke, B., Gryglewicz, G. (2017). pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode. Journal of electroanalytical chemistry, 787, 80-87.
[40] Wu, C., Cheng, Q., Wu, K. (2015). Electrochemical functionalization of N-methyl-2-pyrrolidone-exfoliated graphene nanosheets as highly sensitive analytical platform for phenols. Analytical chemistry, 87(6), 3294-3299.
[41] Xu, Y., Wang, Y., Ding, Y., Luo, L., Liu, X., Zhang, Y. (2013). Determination of p-nitrophenol on carbon paste electrode modified with a nanoscaled compound oxide Mg (Ni) FeO. Journal of applied electrochemistry, 43(7), 679-687.
[42] Wang, P., Xiao, J., Guo, M., Xia, Y., Li, Z., Jiang, X., Huang, W. (2015). Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode. Journal of the electrochemical society, 162(1), H72-H78.
[43] Yao, C., Sun, H., Fu, H. F., Tan, Z. C. (2015). Sensitive simultaneous determination of nitrophenol isomers at poly (p-aminobenzene sulfonic acid) film modified graphite electrode. Electrochimica acta, 156, 163-170.
[44] Wei, T., Huang, X., Zeng, Q., Wang, L. (2015). Simultaneous electrochemical determination of nitrophenol isomers with the polyfurfural film modified glassy carbon electrode. Journal of electroanalytical chemistry, 743, 105-111.
[45] Peng, D., Zhang, J., Qin, D., Chen, J., Shan, D., Lu, X. (2014). An electrochemical sensor based on polyelectrolyte-functionalized graphene for detection of 4-nitrophenol. Journal of electroanalytical chemistry, 734, 1-6.
[46] Rao, H., Guo, W., Hou, H., Wang, H., Yin, B., Xue, Z., Zhao, G. (2017). Electroanalytical investigation of p-nitrophenol with dual electroactive groups on a reduced graphene oxide modified glassy carbon electrode. International journal of electrochemical science 12(2), 1052-1063.
[47] Giribabu, K., Suresh, R., Manigandan, R., Munusamy, S., Kumar, S. P., Muthamizh, S., Narayanan, V. (2013). Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode. Analyst, 138(19), 5811-5818.