[1] Bhunia, F., Saha, N. C., Kaviraj, A. (2000). Toxicity of thiocyanate to fish, plankton, worm, and aquatic ecosystem. Bulletin of environmental contamination and toxicology, 64(2), 197-204.
[2] Gould, W. D., King, M., Mohapatra, B. R., Cameron, R. A., Kapoor, A., Koren, D. W. (2012). A critical review on destruction of thiocyanate in mining effluents. Minerals engineering, 34, 38-47.
[3] Sirajuddin, A., Rathi, R. K., Umesh, C. (2010). Wastewater Treatment technologies commonly practiced in major steel industries of India. In 16th annual international sustainable development research conference (Vol. 30).
[4] Maranon, E., Vazquez, I., Rodriguez, J., Castrillon, L., Fernandez, Y., Lopez, H. (2008). Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresource technology, 99(10), 4192-4198.
[5] Sirianuntapiboon, S., Chairattanawan, K., Surasinanant, P. (2007). Some properties of a sequencing batch reactor for treatment of wastewater containing thiocyanate compounds. Journal of environmental management, 85(2), 330-337.
[6] Banerjee, G. (1996). Phenol-and thiocyanate-based wastewater treatment in RBC reactor. Journal of environmental engineering, 122(10), 941-948.
[7] Ahmed, S., Popov, V., Trevedi, R. C. (2008, May). Constructed wetland as tertiary treatment for municipal wastewater. In proceedings of the institution of civil engineers-waste and resource management (Vol. 161, No. 2, pp. 77-84). Thomas Telford Ltd.
[8] Souza-Fagundes, E. M., Rosa, L. H., Gomes, N., Santos, M. H., Pimentel, P. F. (2004). Thiocyanate degradation by pure and mixed cultures of microorganisms. Brazilian journal of microbiology, 35(4), 333-336.
[9] Ahmed, S., Dhoble, Y., Gautam, S. (2012). Trends in patenting of technologies related to wastewater treatment.
[10] Z. Grenoble et al., (2007, October) “Physico-chemical processes,” Water environ. Research. 79(10), 1228–1296,.
[11] Lay-Son, M., Drakides, C. (2008). New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor. Water research, 42(3), 774-780.
[12] Dhoble, Y., Ahmed, S. (2017). Removal of Phenol, Ammonia and Thiocyanate Either Alone or in Combination by the Adsorption with Steel Slag. International. Journal of Engeeniring Research Developement, 13(12), 2278–67.
[13] Staib, C., Lant, P. (2007). Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater. Biochemical engineering journal, 34(2), 122-130.
[14] YANG, M., ZHANG, X. J., WU, T., CAO, N., WEI, N., WANG, J. (2006). Adsorption removal of thiocyanate from aqueous solution by calcined hydrotalcite. Journal of environmental sciences, 18(1), 23-28.
[15] Li, Y., Gao, B., Wu, T., Chen, W., Li, X., Wang, B. (2008). Adsorption kinetics for removal of thiocyanate from aqueous solution by calcined hydrotalcite. Colloids and surfaces A: physicochemical and engineering aspects, 325(1-2), 38-43.
[16] Namasivayam, C., Sureshkumar, M. V. (2007). Modelling thiocyanate adsorption onto surfactant-modified coir pith, an agricultural solid ‘waste’. Process safety and environmental protection, 85(6), 521-525.
[17] Namasivayam, C., Prathap, K. (2006). Removal of thiocyanate by industrial solid waste Fe (III)/Cr (III) hydroxide: Kinetic and equilibrium studies. Journal of environmental engineering and management, 16(4), 267-274.
[18] Dizge, N., Demirbas, E., Kobya, M. (2009). Removal of thiocyanate from aqueous solutions by ion exchange. Journal of hazardous materials, 166(2-3), 1367-1376.
[19] Xie, F., Borowiec, J., Zhang, J. (2013). Synthesis of AgCl nanoparticles-loaded hydrotalcite as highly efficient adsorbent for removal of thiocyanate. Chemical engineering journal, 223, 584-591.
[20] R. Ahmad et al., ( October 2005) Physico-Chemical Processes, Water Environmental. Research 77( 6), 982–1156.
[21] Das, B., Prakash, S., Reddy, P. S. R., Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, conservation and recycling, 50(1), 40-57.
[22] E. Merck, Testing of water. E. Merck, 1974.
[23] Siva Kumar, N. A. D. A. V. A. L. A., Min, K. (2011). Removal of phenolic compounds from aqueous solutions by biosorption onto Acacia leucocephala bark powder: Equilibrium and kinetic studies. Journal of the Chilean chemical society, 56(1), 539-545.
[24] Yakout, S. M., Elsherif, E. (2010). Carbon—science and technology. Applied science innovations Pvt. Ltd. India, 1, 144-153.
[25] Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295.
[26] Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57(385471), 1100-1107.
[27] Alzaydien, A. S., Manasreh, W. (2009). Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto activated phosphate rock. International journal of physical sciences, 4(4), 172-181.
[28] Bingol, D., Tekin, N., Alkan, M. (2010). Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Applied clay science, 50(3), 315-321.
[29] Ponnusami, V., Krithika, V., Madhuram, R., Srivastava, S. N. (2007). Biosorption of reactive dye using acid-treated rice husk: factorial design analysis. Journal of hazardous materials, 142(1-2), 397-403.
[30] Daffalla, S. B., Mukhtar, H., Shaharun, M. S. (2010). Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption.
[31] Silva, F. G. D., Liborio, J. B., Helene, P. (2008). La mejora de propiedades físicas y químicas de hormigón con silice de cáscara de arroz (SRH) brasileña. Revista ingeniería de construcción, 23(1), 18-25.
[32] Brown, G. E., Prewitt, C. T., Papike, J. J., & Sueno, S. (1972). A comparison of the structures of low and high pigeonite. Journal of geophysical research, 77(29), 5778-5789.
[33] Jacobsen, S. D., Holl, C. M., Adams, K. A., Fischer, R. A., Martin, E. S., Bina, C. R., Dera, P. (2008). Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. American mineralogist, 93(11-12), 1823-1828.
[34] Kusaka, K., Ohmasa, M., Hagiya, K., Iishi, K., Haga, N. (1998). On variety of the Ca coordination in the incommensurate structure of synthetic iron-bearing åkermanite, Ca2 (Mg0. 55, Fe0. 45) Si2O7. Mineralogical journal, 20(2), 47-58.
[35] Antao, S. M., Hassan, I. (2010). Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffraction data. The Canadian Mineralogist, 48(5), 1225-1236.
[36] Olu-Owolabi, B. I., Diagboya, P. N., Adebowale, K. O. (2014). Evaluation of pyrene sorption–desorption on tropical soils. Journal of environmental management, 137, 1-9.
[37] Namasivayam, C., Prathap, K. (2006). Removal of thiocyanate by industrial solid waste Fe (III)/Cr (III) hydroxide: Kinetic and equilibrium studies. Journal of environmental engineering and management, 16(4), 267-274.
[38] Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., Mishra, I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids and surfaces a: physicochemical and engineering aspects, 272(1-2), 89-104.
[39] Stavropoulos, G. G., Skodras, G. S., Papadimitriou, K. G. (2015). Effect of solution chemistry on cyanide adsorption in activated carbon. Applied thermal engineering, 74, 182-185.
[40] Wu, T., Sun, D., Li, Y., Zhang, H., & Lu, F. (2011). Thiocyanate removal from aqueous solution by a synthetic hydrotalcite sol. Journal of colloid and interface science, 355(1), 198-203.
[41] Inglezakis, V. J., Zorpas, A. A. (2012). Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalination and water treatment, 39(1-3), 149-157.
[42] Chand, S., Paul, B., Kumar, M. (2016). A comparative study of physicochemical and mineralogical properties of LD Slag from some selected steel plants in India. Journal of environmental science and technology, 9(1), 75-87.
[43] Sharma, G., Pethaiyan, J. (2013). A thermal decomposition approach for the synthesis of iron oxide microspheres. MRS Online Proceedings library archive, 1547, 155-160.
[44] Vu, H. P., Moreau, J. W. (2015). Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Chemosphere, 119, 987-993.
[45] Liu, B., Zhang, W., Zhang, Q., Zhang, H., Yu, J., Yang, X. (2012). Facile method for synthesis of hollow porous magnetic microspheres with controllable structure. Journal of colloid and interface science, 375(1), 70-77.
[46] Yang, L., Yang, M., Xu, P., Zhao, X., Bai, H., Li, H. (2017). Characteristics of nitrate removal from aqueous solution by modified steel slag. Water, 9(10), 757.