[1] Singh, S., Jain, S., Venkateswaran, P. S., Tiwari, A. K., Nouni, M. R., Pandey, J. K., Goel, S. (2015). Hydrogen: a sustainable fuel for future of the transport sector. Renewable and sustainable energy reviews, 51, 623-633
[2] Rahman, F. A., Aziz, M. M. A., Saidur, R., Bakar, W. A. W. A., Hainin, M. R., Putrajaya, R., Hassan, N. A. (2017). Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renewable and sustainable energy reviews, 71, 112-126.
[3] Center, M. P. (2012). National low carbon fuel standard, Carnegie Mellon University.
[4] Wennersten, R., Sun, Q., Li, H. (2015). The future potential for Carbon Capture and Storage in climate change mitigation–an overview from perspectives of technology, economy and risk. Journal of cleaner production, 103, 724-736.
[5] He, X., Fu, C., Hägg, M. B. (2015). Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane. Chemical engineering journal, 268, 1-9.
[6] Chen, L., Sasaki, H., Watanabe, T., Okajima, J., Komiya, A., Maruyama, S. (2017). Production strategy for oceanic methane hydrate extraction and power generation with carbon capture and Storage (CCS). Energy, 126, 256-272.
[7] Hansson, A., Bryngelsson, M. (2009). Expert opinions on carbon dioxide capture and storage—a framing of uncertainties and possibilities. Energy policy, 37(6), 2273-2282.
[8] Matzen, M., Demirel, Y. (2016). Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment. Journal of cleaner production, 139, 1068-1077.
[9] Matzen, M., Alhajji, M., Demirel, Y. (2015). Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix. Energy, 93, 343-353.
[10] Luthra, S., Kumar, S., Garg, D., Haleem, A. (2015). Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renewable and sustainable energy reviews, 41, 762-776.
[12] Elum, Z. A., Momodu, A. S. (2017). Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. Renewable and sustainable energy reviews, 76, 72-80.
[13] Kandiyoti, R., Herod, A., Bartle, K. D., Morgan, T. J. (2016). Solid fuels and heavy hydrocarbon liquids: thermal characterization and analysis. Elsevier.
[14] Morrow, W. R., Marano, J., Hasanbeigi, A., Masanet, E., Sathaye, J. (2015). Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry. Energy, 93, 95-105.
[15] Poživil, J. (2004). Use of expansion turbines in natural gas pressure reduction stations. Acta montanistica slovaca, 9(3), 258-260.
[16] Farzaneh-Gord, M., Maghrebi, M. J. (2009). Exergy of natural gas flow in Iran's natural gas fields. International journal of exergy, 6(1), 131-142.
[17] Maddaloni, J. D., Rowe, A. M. (2007). Natural gas exergy recovery powering distributed hydrogen production. International journal of hydrogen energy, 2(5), 557-566.
[18] Arabkoohsar, A., Farzaneh-Gord, M., Deymi-DashteBayaz, M., Machado, L., Koury, R. N. N. (2015). A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set. Renewable energy, 81, 239-250.
[19] Sharma, M., Singh, O. (2016). Exergy analysis of dual pressure HRSG for different dead states and varying steam generation states in gas/steam combined cycle power plant. Applied thermal engineering, 93, 614-622.
[20] Li, J., Wang, K., Cheng, L. (2017). Experiment and optimization of a new kind once-through heat recovery steam generator (HRSG) based on analysis of exergy and economy. Applied thermal engineering, 120, 402-415.
[21] Smith, J. M., Van Ness, H., Abbott, M. (2005). Introduction to chemical engineering thermodynamics, The McGraw-Hill Chemical Engineering Series, New York, USA.
[22] API, (2014). Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry.
[23] Peters, M. S., Timmerhaus, K. D., West, R. E., Timmerhaus, K., West, R. (1968). Plant design and economics for chemical engineers (Vol. 4). New York: McGraw-Hill.
[24] Lozowski, D., Ondrey, G., Jenkins, S., Bailey, M. P. (2012). Chemical engineering plant cost index (CEPCI). Chemical engineering journal, 119, 84.
[26] Bloch, H. P., Soares, C. (2001). Turboexpanders and process applications. Gulf professional publishing.