[1] Alimohammadi, Z., Younessi, H., Bahramifar, N. (2016). Desorption reactive red 198 from activated carbon prepared from walnut shells: Effects of temperature, sodium carbonate concentration and organic solvent dose. Environmental science and technology, 3, 137-141.
[2] Yang, Y., Xu, L., Wang, H., Wang, W., Zhang, L. (2016). TiO2/graphene porous composite and its photocatalytic degradation of methylene blue. Materials and design, 108, 632-639.
[3] Bhuyan, B., Paul, B., Dhar, S. S., Vadivel, S. (2017). Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue. Materials chemistry and physics, 188, 1-7.
[4] Asl, M. I., Ghazi, M. M., Jahangiri, M. (2016). Synthesis, characterization and degradation activity of Methyl orange Azo dye using synthesized CuO/α-Fe2O3 nanocomposite, Advances in Environmental Technology, 2(3), 143-151.
[5] Dariani, R. S., Esmaeili, A., Mortezaali, A., Dehghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik-international journal for light and electron optics, 127(18), 7143-7154.
[6] Bian, X., Hong, K., Liu, L., Xu, M. (2013). Magnetically separable hybrid CdS-TiO2-Fe3O4 nanomaterial: Enhanced photocatalystic activity under UV and visible irradiation. Applied sSurface science, 280, 349-353
[7] Asvadi, F., Fallah, N., Elyasi, S., Mohseni, F. (2017). Investigation of affecting operational parameters in photocatalytic degradation of reactive red 198 with TiO2: optimization through response surface methodology, Advances in Environmental Technology, 2(4) 169-177.
[8] Arimi, A., Farhadian, M., Solaimany Nazar, A.R., Homayoonfal, M. (2016). Assessment of operating parameters for photocatalytic degradation of a textile dye by Fe2O3/TiO2/clinoptilolite nanocatalyst using Taguchi experimental design. Research on Chemical Intermediates, 42, 4021-4040.
[9] Liu, H., Shon, H. K., Sun, X., Vigneswaran, S., Nan, H. (2011). Preparation and characterization of visible light responsive Fe2O3–TiO2 composites. Applied surface science, 257(13), 5813-5819.
[10] Yao, K., Basnet, P., Sessions, H., Larsen, G. K., Murph, S. E. H., Zhao, Y. (2016). Fe2O3–TiO2 core–shell nanorod arrays for visible light photocatalytic applications. Catalysis today, 270, 51-58.
[11] Niu, P., Hao, J. (2013). Photocatalytic degradation of methyl orange by titanium dioxide-decatungstate nanocomposite films supported on glass slides. Colloids and Surfaces A: Physicochemical and engineering aspects, 431, 127-132.
[12] Song, J., Xu, Z., Liu, W., Chang, C. T. (2016). KBrO3 and graphene as double and enhanced collaborative catalysts for the photocatalytic degradation of amoxicillin by UVA/TiO2 nanotube processes. Materials science in semiconductor processing, 52, 32-37.
[13] Zheng, R., Zhang, H., Liu, Y., Wang, X., Han, Z. (2017). Ag-ligand modified tungstovandates and their efficient catalysis degradation properties for methylene blue. Journal of solid state chemistry, 246, 258-263.
[14] Liu, F., Jamal, R., Wang, Y., Wang, M., Yang, L., Abdiryim, T. (2017). Photodegradation of methylene blue by photocatalyst of DAD type polymer/functionalized multi-walled carbon nanotubes composite under visible-light irradiation. Chemosphere, 168, 1669-1676.
[15] Park, J. H., Jang, I., Song, K., Oh, S. G. (2013). Surfactants-assisted preparation of TiO2–Mn oxide composites and their catalytic activities for degradation of organic pollutant. Journal of physics and chemistry of solids, 74(7), 1056-1062
[16] Amini, M., Pourbadiei, B., Ruberu, T. P. A., Woo, L. K. (2014). Catalytic activity of MnO x/WO3 nanoparticles: synthesis, structure characterization and oxidative degradation of methylene blue. New journal of chemistry, 38(3), 1250-1255.
[17] Zhang, L., Nie, Y., Hu, C., Hu, X. (2011). Decolorization of methylene blue in layered manganese oxide suspension with H2O2. Journal of hazardous materials, 190(1-3), 780-785.
[18] Mehrabian, M., Esteki, Z. (2017). Degradation of methylene blue by photocatalysis of copper assisted ZnS nanoparticle thin films. Optik-international journal for light and electron optics, 130, 1168-1172.
[19] Wang, C., Shi, H., Li, Y. (2011). Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Applied surface science, 257(15), 6873-6877.
[20] Korkuna, O., Leboda, R., Skubiszewska-Zie, J., Vrublevs’ka, T., Gun’ko, V. M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and mesoporous materials, 87(3), 243-254.
[21] Battisha, I. K., Afify, H. H., Ibrahim, M. (2006). Synthesis of Fe2O3 concentrations and sintering temperature on FTIR and magnetic susceptibility measured from 4 to 300 K of monolith silica gel prepared by sol–gel technique. Journal of magnetism and magnetic materials, 306(2), 211-217.
[22] Kannaiyan, D., Kochuveedu, S. T., Jang, Y. H., Jang, Y. J., Lee, J. Y., Lee, J., Kim, D. H. (2010). Enhanced photophysical properties of nanopatterned titania nanodots/nanowires upon hybridization with silica via block copolymer templated sol-gel process. Polymers, 2(4), 490-504.
[23] Sohrabi, M. R., Khavaran, A., Shariati, S., Shariati, S. (2017). Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian journal of chemistry, 10, S3523-S3531
[24] Nadarajan, R., Bakar, W. A. W. A., Ali, R., Ismail, R. (2016). Photocatalytic degradation of 1, 2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under visible light: application of response surface methodology. Arabian journal of chemistry, 11(1), 34-47.
[25] Lambropoulou, D., Evgenidou, E., Saliverou, V., Kosma, C., & Konstantinou, I. (2017). Degradation of venlafaxine using TiO2/UV process: kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation. Journal of hazardous materials, 323, 513-526.
[26] Devadi, M. A. H., Krishna, M., Murthy, H. N., & Sathyanarayana, B. S. (2014). Statistical optimization for photocatalytic degradation of methylene blue by Ag-TiO2 nanoparticles. Procedia materials science, 5, 612-621.