[1] Zollinger, H., (1991). Colour chemistry: Synthesis properties and application of organic dyes and pigments. New York VCH publishers.
[2] Fongsatitkul, P., Elefsiniotis, P., Boonyanitchakul, B. (2006). Treatment of a textile dye wastewater by an electrochemical process. Journal of environmental science and health part A, 41(7), 1183-1195.
[3] Işık, M., Sponza, D. T. (2008). Anaerobic/aerobic treatment of a simulated textile wastewater. Separation and purification technology, 60(1), 64-72.
[4] Pandey, B. V., & Upadhyay, R. S. (2006). Spectroscopic characterization and identification of pseudomonas fluorescens mediated metabolic products of Acid Yellow-9. Microbiological research, 161(4), 311-315.
[5] Ranjusha, V. P., Pundir, R., Kumar, K., Dastidar, M. G., Sreekrishnan, T. R. (2010). Biosorption of remazol Black B dye (Azo dye) by the growing Aspergillus flavus. Journal of environmental science and health Part A, 45(10), 1256-1263.
[6] Özacar, M., Şengil, I. A. (2003). Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of hazardous materials, 98(1), 211-224.
[7] Akkaya, G., Uzun, İ., Güzel, F. (2007). Kinetics of the adsorption of reactive dyes by chitin. Dyes and pigments, 73(2), 168-177.
[8] Benkli, Y. E., Can, M. F., Turan, M., Celik, M. S. (2005). Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water research, 39(2), 487-493.
[9] Geethakarthi, A., & Phanikumar, B. R. (2011). Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies. International journal of environmental science & technology, 8(3), 561-570.
[10] Lin, S. H., Liu, W. Y. (1994). Treatment of textile wastewater by ozonation in a packed‐bed reactor. Environmental technology, 15(4), 299-311.
[11] Kashefialasl, M., Khosravi, M., Marandi, R., Seyyedi, K. (2006). Treatment of dye solution containing colored index acid yellow 36 by electrocoagulation using iron electrodes. International journal of environmental science and technology, 2(4), 365-371.
[12] Daneshvar, N., Sorkhabi, H. A., Kasiri, M. B. (2004). Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of hazardous materials, 112(1), 55-62.
[13] Metcalf & Eddy (Empresa comercial). (1991). Wastewater Engineering: Treatment disposal and reuse. Irwin Mcgraw Hill.
[14] Ternes, T. A., Hirsch, R. (2000). Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environmental science & technology, 34(13), 2741-2748.
[15] Xu, X. R., Li, X. Z. (2010). Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and purification technology, 72(1), 105-111.
[16] Rastogi, A., Al-Abed, S. R., Dionysiou, D. D. (2009). Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied catalysis B: environmental, 85(3), 171-179.
[17] Wang, P., Yang, S., Shan, L., Niu, R., Shao, X. (2011). Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. Journal of environmental sciences, 23(11), 1799-1807.
[18] Khataee, A. R., Mirzajani, O. (2010). UV/peroxydisulfate oxidation of CI Basic Blue 3: Modeling of key factors by artificial neural network. Desalination, 251(1), 64-69.
[19] Salari, D., Niaei, A., Aber, S., Rasoulifard, M. H. (2009). The photooxidative destruction of CI Basic Yellow 2 using UV/S2O82– process in a rectangular continuous photoreactor. Journal of hazardous materials, 166(1), 61-66.
[20] Zhang, H., Zhang, J., Zhang, C., Liu, F., Zhang, D. (2009). Degradation of CI acid 0range 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics sonochemistry, 16(3), 325-330.
[21] Panizza, M., Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water research, 43(2), 339-344.
[22] Özcan, A. S., Erdem, B., Özcan, A. (2004). Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. Journal of colloid and Interface science, 280(1), 44-54.
[23] Özcan, A., Öncü, E. M., Özcan, A. S. (2006). Kinetics, isotherm and thermodynamic studies of adsorption of Acid blue 193 from aqueous solutions onto natural sepiolite. Colloids and surfaces A: Physicochemical and engineering aspects, 277(1), 90-97.
[24] Can, M. (2016). Investigation of the factors affecting acid blue 256 adsorption from aqueous solutions onto red pine sawdust: equilibrium, kinetics, process design, and spectroscopic analysis. Desalination and water treatment, 57(12), 5636-5653.
[25] Vijaykumar, M. H., Veeranagouda, Y., Neelakanteshwar, K., Karegoudar, T. B. (2006). Decolorization of 1: 2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides. World journal of microbiology and biotechnology, 22(2), 157-162.
[26] Purai, A., & Rattan, V. K. (2012). Biosorption of leather Dye (Acid Blue 193) from aqueous solution using ash prepared from cow dung, mango stone, parthenium leaves and activated carbon. Indian chemical engineer, 54(3), 190-209.
[27] Rasoulifard, M. H., Fazli, M., Inanlou, M., Ahmadi, R. (2015). Evaluation of the effectiveness of process in removal trace anthraquinone CI acid blue 25 from wastewater. Chemical engineering communications, 202(4), 467-474.
[28] Shu, H. Y., Chang, M. C., Huang, S. W. (2015). UV irradiation catalyzed persulfate advanced oxidation process for decolorization of Acid Blue 113 wastewater. Desalination and water treatment, 54(4-5), 1013-1021.
[29] Shu, H. Y., Chang, M. C., Huang, S. W. (2016). Decolorization and mineralization of azo dye Acid Blue 113 by the UV/Oxone process and optimization of operating parameters. Desalination and Water Treatment, 57(17), 7951-7962.
[30] Akay, U., Demirtas, E. A. (2015). Degradation of burazol blue ED by heterogeneous fenton process: simultaneous optimization by central composite design. Desalination and water treatment, 56(12), 3346-3356.
[31] House, D. A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate. Chemical reviews, 62(3), 185-203.
[32] Maurino, V., Calza, P., Minero, C., Pelizzetti, E., Vincenti, M. (1997). Light-assisted 1, 4-dioxane degradation. Chemosphere, 35(11), 2675-2688.
[33] Weiner, E. R., 2000. Applications of environmental chemistry, A practical guide for environmental professionals, CRC Press, pp. 27.
[34] Lapin L. L. (1997) Modern Engineering Statistics. Belmont, CA, USA: Wards-worth Publishing Company.
[35] Vining, G. G., Kowalski, S. (2010). Statistical methods for engineers. Cengage Learning.
[36] Modirshahla, N., Behnajady, M. A., Ghanbary, F. (2007). Decolorization and mineralization of CI Acid Yellow 23 by Fenton and photo-Fenton processes. Dyes and pigments, 73(3), 305-310.
[37] Chan, T. W., Graham, N. J., Chu, W. (2010). Degradation of iopromide by combined UV irradiation and peroxydisulfate. Journal of hazardous materials, 181(1), 508-513.
[38] Oh, S. Y., Kim, H. W., Park, J. M., Park, H. S., Yoon, C. (2009). Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe 2+, and zero-valent iron. Journal of hazardous materials, 168(1), 346-351.
[39] Sun, S. P., Li, C. J., Sun, J. H., Shi, S. H., Fan, M. H., Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of hazardous materials, 161(2), 1052-1057.
[40] Lau, T. K., Chu, W., Graham, N. J. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environmental science & technology, 41(2), 613-619.
[41] Kasiri, M. B., Khataee, A. R. (2011). Photooxidative decolorization of two organic dyes with different chemical structures by UV/H 2 O 2 process: experimental design. Desalination, 270(1), 151-159.
[42] Sun, S. P., Li, C. J., Sun, J. H., Shi, S. H., Fan, M. H., Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of hazardous materials, 161(2), 1052-1057.