[1] Craun, G. F. (Ed.). (1986). Waterborne diseases in the United States. CRC PressI Llc.
[2] Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews, 10(3), 505-520.
[4] Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal Escherichia coli. Nature reviews. Microbiology, 8(3), 207.
[6] Ryan, K. J., & Ray, C. G. (2004). Medical microbiology. McGraw Hill, 4, 370.
[7] Sanford, C. A., Jong, E. C., & Pottinger, P. S. (2016). The Travel and Tropical Medicine Manual E-Book. Elsevier Health Sciences.
[8] Asaeda, G., Caicedow, G., & Swanson, C. (2005). Fried rice syndrome. JEMS: a journal of emergency medical services, 30(12), 30-32.
[9] Todar, K. (2013). Online Textbook of Bacteriology. 2011. Bacterial Endotoxin.
[10] Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4(1), 51.
[11] Sanpui, P., Murugadoss, A., Prasad, P. D., Ghosh, S. S., & Chattopadhyay, A. (2008). The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. International journal of food microbiology, 124(2), 142-146.
[12] Pinto, R. J., Fernandes, S. C., Freire, C. S., Sadocco, P., Causio, J., Neto, C. P., & Trindade, T. (2012). Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research, 348, 77-83.
[13] Hu, L., Wu, X., Han, J., Chen, L., Vass, S. O., Browne, P., Hall, B.S., Bot, C., Gobalakrishnapillai, V., Searle, P.F., Knox, R. J. (2011). Synthesis and structure–activity relationships of nitrobenzyl phosphoramide mustards as nitroreductase-activated prodrugs. Bioorganic & medicinal chemistry letters, 21(13), 3986-3991.
[14] Wang, B. L., Liu, X. S., Ji, Y., Ren, K. F., & Ji, J. (2012). Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate polymers, 90(1), 8-15.
[15] Ueno H., Mori, T., Fujinaga, T. (2001). Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews, 52,105–15.
[16] Jabeen, S., Kausar, A., Saeed, S., Muhammad, B., & Gul, S. (2016). Poly (vinyl alcohol) and chitosan blend cross-linked with bis phenol-F-diglycidyl ether: mechanical, thermal and water absorption investigation. Journal of the Chinese Advanced Materials Society, 4(3), 211-227.
[17] Kast, C. E., Frick, W., Losert, U., & Bernkop-Schnürch, A. (2003). Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering. International journal of pharmaceutics, 256(1), 183-189.
[18] Yoo, H. S., Lee, J. E., Chung, H., Kwon, I. C., & Jeong, S. Y. (2005). Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. Journal of Controlled Release, 103(1), 235-243.
[19] Park, J. H., Saravanakumar, G., Kim, K., & Kwon, I. C. (2010). Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced drug delivery reviews, 62(1), 28-41.
[20] Chan, P., Kurisawa, M., Chung, J. E., & Yang, Y. Y. (2007). Synthesis and characterization of chitosan-g-poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 28(3), 540-549.
[21] Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, V. A., Hurdle, J. G., Carson, E. I., ... & Lee, R. E. (2008). Novel Acyl Phosphate Mimics that Target PlsY, an Essential Acyltransferase in Gram‐Positive Bacteria. ChemMedChem, 3(12), 1936-1945.
[22] Oroujzadeh, N., Gholivand, K., & Shariatinia, Z. (2013). The Spectroscopy and Structure of New 1, 3, 2-Diazaphospholes and 1, 3, 2-Diazaphosphorinanes. Phosphorus, Sulfur, and Silicon and the Related Elements, 188(1-3), 183-191.
[23] Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M., & Whittingham, W. (2002). A new synthesis of phosphoramidates: inhibitors of the key bacterial enzyme aspartate semi-aldehyde dehydrogenase. Chemical Communications, (18), 2004-2005.
[24] Gholivand, K., Oroujzadeh, N., & Shariatinia, Z. (2010). New phosphoric triamides: Chlorine substituents effects and polymorphism. Heteroatom Chemistry, 21(3), 168-180.
[25] Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V., & Amirkhanov, V. M. (2009). Synthesis and investigations of mixed-ligand lanthanide complexes with N, N′-dipyrrolidine-N′′-trichloracetylphosphortriamide, dimethyl-N-trichloracetylamidophosphate, 1, 10-phenanthroline and 2, 2′-bipyrimidine. Polyhedron, 28(17), 3731-3738.
[26] Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A., Gawryszewska, P., & Jerzykiewicz, L. B. (2014). Powerful new ligand systems: carbacylamidophosphates (CAPh) and sulfonylamidophosphates (SAPh). Chapter, 7, 199-248.
[27] Gholivand, K., Oroujzadeh, N., & Shariatinia, Z. (2010). N-2, 4-dichlorobenzoyl phosphoric triamides: Synthesis, spectroscopic and X-ray crystallography studies. Journal of chemical sciences, 122(4), 549-559.
[28] Litsis, O. O., Ovchynnikov, V. A., Shishkina, S. V., Sliva, T. Y., & Amirkhanov, V. M. (2013). Dinuclear 3D metal complexes based on a carbacylamidophosphate ligand: redetermination of the ligand crystal structure. Transition Metal Chemistry, 38(4), 473-479.
[29] Amirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Sliva, T. Y., Penkova, L. V., Yushchenko, T., ... & Amirkhanov, V. M. (2014). Heterobinuclear Zn–Ln and Ni–Ln Complexes with Schiff‐Base and Carbacylamidophosphate Ligands: Synthesis, Crystal Structures, and Catalytic Activity. European Journal of Inorganic Chemistry, 23, 3720-3730.
[30] Gubina, K. E., Maslov, O. A., Trush, E. A., Trush, V. A., Ovchynnikov, V. A., Shishkina, S. V., Amirkhanov, V. M. (2009). Novel heteroligand complexes of Co (II), Cu (II), Ni (II) and Mn (II) formed by 2, 2′-dipyridyl or 1, 10-phenanthroline and phosphortriamide ligands: Synthesis and structure. Polyhedron, 28(13), 2661-2666.
[31] Gholivand, K., Oroujzadeh, N., Erben, M. F., & Della Védova, C. O. (2009). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1, 3, 2-diazaphospholidine-2, 4, 5-triones. Polyhedron, 28(3), 541-547.
[32] Schultz, C. (2003). Prodrugs of biologically active phosphate esters. Bioorganic & medicinal chemistry, 11(6), 885-898.
[33] Wu, L. Y., Do, J. C., Kazak, M., Page, H., Toriyabe, Y., Anderson, M. O., & Berkman, C. E. (2008). Phosphoramidate derivatives of hydroxysteroids as inhibitors of prostate-specific membrane antigen. Bioorganic & medicinal chemistry letters, 18(1), 281-284.
[34] Venkatachalam, T. K., Sarquis, M., Qazi, S., & Uckun, F. M. (2006). Effect of alkyl groups on the cellular hydrolysis of stavudine phosphoramidates. Bioorganic & medicinal chemistry, 14(18), 6420-6433.
[35] Gholivand, K., Farshadian, S., Hosseini, Z., Khajeh, K., & Akbari, N. (2010). Two novel diorganotin phosphonic diamides: syntheses, crystal structures, spectral properties and in vitro antibacterial studies. Applied Organometallic Chemistry, 24(10), 700-707.
[36] Gholivand, K., Dorosti, N., Ghaziany, F., Mirshahi, M., & Sarikhani, S. (2012). N‐phosphinyl ureas: Synthesis, characterization, X‐ray structure, and in vitro evaluation of antitumor activity. Heteroatom Chemistry, 23(1), 74-83.
[37] Gholivand, K., Alizadehgan, A. M., Mojahed, F., Dehghan, G., Mohammadirad, A., & Abdollahi, M. (2008). Some new carbacylamidophosphates as inhibitors of acetylcholinesterase and butyrylcholinesterase. Zeitschrift für Naturforschung C, 63(3-4), 241-250.
[38] Gholivand, K., Shariatinia, Z., Khajeh, K., & Naderimanesh, H. (2006). Syntheses and spectroscopic characterization of some phosphoramidates as reversible inhibitors of human acetylcholinesterase and determination of their potency. Journal of enzyme inhibition and medicinal chemistry, 21(1), 31-35.
[39] Oroujzadeh, N., Gholivand, K., & Jamalabadi, N. R. (2017). New carbacylamidophosphates containing nicotinamide: Synthesis, crystallography and antibacterial activity. Polyhedron, 122, 29-38.
[40] Caswell, K. K., Bender, C. M., & Murphy, C. J. (2003). Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 3(5), 667-669.
[41] Oroujzadeh, N., & Rezaei Jamalabadi, S. (2016). New nanocomposite of N-nicotinyl, N′, N ″-bis (tert-butyl) phosphorictriamide based on chitosan: Fabrication and antibacterial investigation. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(11-12), 1572-1573.
[42] Srivastava, R., Tiwari, D. K., & Dutta, P. K. (2011). 4-(Ethoxycarbonyl) phenyl-1-amino-oxobutanoic acid–chitosan complex as a new matrix for silver nanocomposite film: Preparation, characterization and antibacterial activity. International journal of biological macromolecules, 49(5), 863-870.
[43] Wang, X., Du, Y., Yang, J., Wang, X., Shi, X., & Hu, Y. (2006). Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer, 47(19), 6738-6744.