[1] Gerstl, Z., Yaron, B. (1983). Behavior of bromacil and napropamide in soils: I. Adsorption and degradation. Soil science society of America journal, 47(3), 474-478.
[2] Worrall, F., Fernandez-Perez, M., Johnson, A. C., Flores-Cesperedes, F., Gonzalez-Pradas, E. (2001). Limitations on the role of incorporated organic matter in reducing pesticide leaching. Journal of contaminant hydrology, 49(3), 241-262.
[3] Lei, W., Zhou, X. (2017). Experiment and simulation on adsorption of 3, 5, 6-Trichloro-2-Pyridinol in typical farmland of purple soil, Southwestern China. Soil and sediment contamination: An international journal, 26(4), 345-363.
[4] Weber, J. B., Wilkerson, G. G., Reinhardt, C. F. (2004). Calculating pesticide sorption coefficients (K d) using selected soil properties. Chemosphere, 55(2), 157-166.
[5] Weber, J. B., Taylor, K. A., Wilkerson, G. G. (2006). Soil cover and tillage influenced metolachlor mobility and dissipation in field lysimeters. Agronomy journal, 98(1), 19-25.
[6] Hamaker, J.W.; Thompson, J.M. (1972). Adsorption. P.49-113. In C.A.I. Goring and J.W. Hamaker (ed.) Organic Chemicals in the soil environment.Vol. 1. Marcel Dekker, New York.
[7] Khan, S. U. (1978). The interaction of organic matter with pesticides. Developments in soil science, 8, 137-171.
[8] Khan, S. U. (1980). Pesticides in the soil environment. Elsevier. P, 29-56.
[9] Beestman, G. B., Deming, J. M. (1974). Dissipation of acetanilide herbicides from soils. Agronomy journal, 66(2), 308-311.
[10] Baker, J.L., Mickelson, S.K. (1994). Application technology and best management practices for minimizing herbicide runoff. Weed technology, 8, 862-869.
[11] Shipitalo, M. J., Dick, W. A., Edwards, W. M. (2000). Conservation tillage and macropore factors that affect water movement and the fate of chemicals. Soil and tillage research, 53(3), 167-183.
[12] Chiou, C. T. (1989). Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. Reactions and movement of organic chemicals in soils, Soil Science Society of America, Madison, 1-29.
[13] Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. Science of total environment, 12, 63-76.
[14] Weber, J. B., Miller, C. T. (1989). Organic chemical movement over and through soil. Reactions and movement of organic chemicals in soils, Soil Science Society of America, Madison, 305-334.
[15] Stolpe, N. B., Kuzila, M. S. (2002). Relative mobility of atrazine, 2, 4-D and dicamba in volcanic soils of South-central Chile 1. Soil science, 167(5), 338-345.
[16] Hance, R.J. (1989). Adsorption and bioavailability. In: I.R. Grover (ed.). Environmental chemistry of herbicides, Vol. pp. 1-9.CRC Press, Boca Raton, FL.
[17] Sluszny, C., Graber, E. R., Gerstl, Z. (1999). Sorption of s-triazine herbicides in organic matter amended soils: fresh and incubated systems. Water, air, and soil pollution, 115(1), 395-410.
[18] Sadegh-Zadeh, F., Wahid, S. A., Omar, D., Othman, R., Seh-Bardan, B. J. (2011). Sorption and desorption of napropamide in sandy soil amended with chicken dung and palm oil mill effluent. Soil and sediment contamination, 20(4), 387-399.
[19] Stolpe, N. B., McCallister, D. L., Shea, P. J., Lewis, D. T., Dam, R. (1993). Mobility of aniline, benzoic acid, and toluene in four soils and correlation with soil properties. Environmental pollution, 81(3), 287-295.
[20] Celis, R., Cornejo, J., Hermosin, M. C., Koskinen, W. C. (1997). Sorption-desorption of atrazine and simazine by model soil colloidal components. Soil science society of America journal, 61(2), 436-443.
[21] Turin, H. J., Bowman, R. S. (1997). Sorption behavior and competition of bromacil, napropamide, and prometryn. Journal of environmental quality, 26(5), 1282-1287.
[22] Nelson, S. D., Farmer, W. J., Letey, J., Williams, C. F. (2000). Stability and mobility of napropamide complexed with dissolved organic matter in soil columns. Journal of environmental quality, 29(6), 1856-1862.
[23] Von Oepen, B., Kördel, W., Klein, W. (1991). Sorption of nonpolar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere, 22(3-4), 285-304.
[24] Aguer, J. P., Cox, L., Richard, C., Hermosin, M. C., Cornejo, J. (2000). Sorption and photolysis studies in soil and sediment of the herbicide napropamide. Journal of environmental science and health part B, 35(6), 725-738.
[25] Dolaptsoglou, C., Karpouzas, D. G., Menkissoglu-Spiroudi, U., Eleftherohorinos, I., Voudrias, E. A. (2007). Influence of different organic amendments on the degradation, metabolism, and adsorption of terbuthylazine. Journal of environmental quality, 36(6), 1793-1802.
[26] Cheah, U. B., Kirkwood, R. C., Lum, K. Y. (1997). Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pest management science, 50(1), 53-63.
[27] Grey, T. L., Walker, R. H., Hancock, H. G. (1997). Sulfentrazone adsorption and mobility as affected by soil and pH. Weed science, 45(5),733-738.
[28] Piccolo, A., Celano, G. (1993). Modification of infrared spectra of the herbicide glyphosate induced by pH variation. Journal of environmental science and health part B, 28(4), 447-457.
[29] Peter, C. J., Weber, J. B. (1985). Adsorption, mobility, and efficacy of alachlor and metolachlor as influenced by soil properties. Weed science, 33(6), 874-881.
[30] Davies, J. E. D., Jabeen, N. (2003). The adsorption of herbicides and pesticides on clay minerals and soils. Part 2. Atrazine. Journal of inclusion phenomena and macrocyclic chemistry, 46(1), 57-64.
[31] Báez, M. E., Espinoza, J., Silva, R., Fuentes, E. (2015). Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: interpretation of interactions through two-way principal component analysis. Environmental science and pollution research, 22(11), 8576-8585.
[32] Nennemann, A., Mishael, Y., Nir, S., Rubin, B., Polubesova, T., Bergaya, F., Lagaly, G. (2001). Clay-based formulations of metolachlor with reduced leaching. Applied clay science, 18(5), 265-275.
[33] Mortland, M. M. (1970). Clay-organic complexes and interactions. Advances in agronomy, 22, 75-117.
[34] Sawhney, B. L., Singh, S. S. (1997). Sorption of atrazine by Al-and Ca-saturated smectite. Clays clay miner, 45, 333-338.
[35] Sheng, G., Johnston, C. T., Teppen, B. J., Boyd, S. A. (2002). Adsorption of Dinitrophenol Herbfrom Water by Montmorillonites. Clays and Clay Minerals, 50(1), 25-34.
[36] Laird, D. A., Fleming, P. D. (1999). Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environmental toxicology and chemistry, 18(8), 1668-1672.
[37] Jaynes, W. F., Boyd, S. A. (1991). Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays and clay minerals, 39(4), 428-436.
[38] Sheng, G., Johnston, C. T., Teppen, B. J., Boyd, S. A. (2001). Potential contributions of smectite clays and organic matter to pesticide retention in soils. Journal of agricultural and food chemistry, 49(6), 2899-2907.
[39] Kumar, N., Mukherjee, I., Varghese, E. (2015). Adsorption–desorption of tricyclazole: effect of soil types and organic matter. Environmental monitoring and assessment, 187(3), 61.
[40] Williams, C. F., Letey, J., Farmer, W. J. (2006). Estimating the potential for facilitated transport of napropamide by dissolved organic matter. Soil science society of America journal, 70(1), 24-30.
[41] Albarrán, A., Celis, R., Hermosın, M. C., López-Piñeiro, A., Cornejo, J. (2004). Behaviour of simazine in soil amended with the final residue of the olive-oil extraction process. Chemosphere, 54(6), 717-724.
[42] Chiou, C. T., Porter, P. E., Schmedding, D. W. (1983). Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental science technology, 17(4), 227-231.
[43] Das, S. K., Mukherjee, I., Kumar, A. (2015). Effect of soil type and organic manure on adsorption–desorption of flubendiamide. Environmental monitoring and assessment, 187(7), 403.
[44] Huang, X., Lee, L. S. (2001). Effects of dissolved organic matter from animal waste effluent on chlorpyrifos sorption by soils. Journal of environmental quality, 30(4), 1258-1265.
[45] Ben-Hur, M., Letey, J., Farmer, W. J., Williams, C. F., Nelson, S. D. (2003). Soluble and solid organic matter effects on atrazine adsorption in cultivated soils Soil science society of America journal, 67(4), 1140-1146.
[46] Li, K., Xing, B., Torello, W. A. (2005). Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environmental pollution, 134(2), 187-194.
[47] Cox, L., Velarde, P., Cabrera, A., Hermosín, M. C., Cornejo, J. (2007). Dissolved organic carbon interactions with sorption and leaching of diuron in organic‐amended soils. European journal of soil science, 58(3), 714-721.
[48] Senesi, N., Loffredo, E., D'Orazio, V., Brunetti, G., Miano, T. M., La Cava, P. (2001). Adsorption of pesticides by humic acids from organic amendments and soils. Humic substances and chemical contaminants, (humicsubstancesa), 129-153.
[49] Nelson, S. D., Letey, J., Farmer, W. J., Williams, C. F., Ben-Hur, M. (2000). Herbicide application method effects on napropamide complexation with dissolved organic matter. Journal of environmental quality, 29(3), 987-994.
[50] Lee, D. Y., Farmer, W. J. (1989). Dissolved organic matter interaction with napropamide and four other nonionic pesticides. Journal of environmental quality, 18(4), 468-474.
[51] Lee, D. Y., Farmer, W. J. (1989). Dissolved organic matter interaction with napropamide and four other nonionic pesticides. Journal of environmental quality, 18(4), 468-474.
[52] Briceño, G., Palma, G., Durán, N. (2007). Influence of organic amendment on the biodegradation and movement of pesticides. Critical reviews in environmental science and technology, 37(3), 233-271.
[53] Fernandes, M. C., Cox, L., Hermosín, M. C., Cornejo, J. (2006). Organic amendments affecting sorption, leaching and dissipation of fungicides in soils. Pest management science, 62(12), 1207-1215.
[54] Mingelgrin, U., Gerstl, Z. (1983). Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. Journal of environmental quality, 12(1), 1-11.
[55] Sadegh-Zadeh, F., Wahid, S. A., Seh-Bardan, B. J., Othman, R., Omar, D. (2012). Fate of napropamide herbicide in selected Malaysian soils. Journal of environmental science and health, Part B, 47(2), 144-151.
[56] Kumari, K. G. I. D., Moldrup, P., Paradelo, M., Elsgaard, L., de Jonge, L. W. (2016). Soil properties control glyphosate sorption in soils amended with birch wood biochar. Water, air, and soil pollution, 227(6), 174.
[57] Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R., Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and mesoporous materials, 225, 280-288.
[58] Khorram, M. S., Zhang, Q., Lin, D., Zheng, Y., Fang, H., Yu, Y. (2016). Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of environmental sciences, 44, 269-279.
[59] Gámiz, B., Velarde, P., Spokas, K. A., Hermosín, M. C., Cox, L. (2017). Biochar Soil Additions Affect Herbicide Fate: Importance of application timing and feedstock species. Journal of agricultural and food chemistry, 65(15), 3109-3117.
[60] Cabrera, A., Cox, L., Spokas, K. U. R. T., Hermosín, M. C., Cornejo, J., Koskinen, W. C. (2014). Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Science of the total environment, 470, 438-443.
[61] Beulke, S., Van Beinum, W., Brown, C. D., Mitchell, M., Walker, A. (2005). Evaluation of simplifying assumptions on pesticide degradation in soil. Journal of environmental quality, 34(6), 1933-1943.
[62] Walker, A., Parekh, N. R., Roberts, S. J., Welch, S. J. (1993). Evidence for the enhanced biodegradation of napropamide in soil. Pest management science, 39(1), 55-60.
[63] Walker, A., Welch, S. J., Roberts, S. J. (1996). Induction and transfer of enhanced biodegradation of the herbicide napropamide in soils. Pest management science, 47(2), 131-135.
[64] Sadegh‐Zadeh, F., Samsuri, A. W., Radziah, O., Dzolkhifli, O., Seh‐Bardan, B. J. (2012). Degradation and leaching of napropamide in BRIS soil amended with chicken dung and palm oil mill effluent. Clean–soil, air, water, 40(6), 599-606.
[65] Ng, H. Y. F., Gaynor, J. D., Tan, C. S., Drury, C. F. (1995). Dissipation and loss of atrazine and metolachlor in surface and subsurface drain water: a case studyWater research, 29(10), 2309-2317.
[66] Shaner, D. L., Henry, W. B. (2007). Field history and dissipation of atrazine and metolachlor in Colorado. Journal of environmental quality 36(1), 128-134.
[67] Abdelhafid, R., Houot, S., Barriuso, E. (2000). Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils. Soil biology and biochemistry, 32(3), 389-401.
[68] Rhine, E.D., Fuhrmann, J.J., Radosevich, M. (2003). Microbial community response to atrazine exposure and nutrient availability: Linking degradation capacity to community structure. Microbiology ecology 46, 145-160.
[69] Hamaker, J. W., Youngson, C. R., Goring, C. A. I. (1968). Rate of detoxification of 4‐Amino‐3, 5, 6‐Trichloropicolonic acid in soil. Weed research, 8(1), 46-57.
[70] Hance, R. J., McKone, C. E. (1971). Effect of concentration on the decomposition rates in soil of atrazine, linuron and picloram. Pest management science, 2(1), 31-34.
[71] Kot-Wasik, A., Dabrowska, D., Namiesnik, J. (2004). The Importance of Degradation in the Fate of Selected Organic Compounds in the Environment. Part I. General Considerations. Polish journal of environmental studies, 13(6). 617-626.
[72] Madhum, Y. A., Freed, V. H. (1987). Degradation of the herbicides bromacil, diuron and chlortoluron in soil. Chemosphere, 16(5), 1003-1011.
[73] Raymond, J. W., Rogers, T. N., Shonnard, D. R., Kline, A. A. (2001). A review of structure-based biodegradation estimation methods. Journal of hazardous materials, 84(2), 189-215.
[74] Von Wirén-Lehr, S., Scheunert, I., Dörfler, U. (2002). Mineralization of plant-incorporated residues of 14 C-isoproturon in arable soils originating from different farming systems. Geoderma, 105(3), 351-366.
[75] Boivin, A., Amellal, S., Schiavon, M., Van Genuchten, M. T. (2005). 2, 4-Dichlorophenoxyacetic acid (2, 4-D) sorption and degradation dynamics in three agricultural soils. Environmental pollution, 138(1), 92-99.
[76] Sanchez, M. E., Estrada, I. B., Martinez, O., Martin-Villacorta, J., Aller, A., Moran, A. (2004). Influence of the application of sewage sludge on the degradation of pesticides in the soil. Chemosphere, 57(7), 673-679.
[77] Chantigny, M. H. (2003). Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, 113(3), 357-380.
[78] Cox, L., Cecchi, A., Celis, R., Hermosín, M. D. C., Koskinen, W.C., Cornejo, J. (2001). Effect of exogenous carbon on movement of simazine and 2, 4-D in soils. Soil science society of America journal, 65(6), 1688-1695.
[79] Iglesias-Jiménez, E., Poveda, E., Sánchez-Martín, M. J., Sánchez-Camazano, M. (1997). Effect of the nature of exogenous organic matter on pesticide sorption by the soil. Archives of environmental contamination and toxicology, 33(2), 117-124.
[80] Antonious, G. F., Patterson, M. A., Snyder, J. C. (2005). Impact of soil amendments on broccoli quality and napropamide movement under field conditions. Bulletin of environmental contamination and toxicology, 75(4), 797-804.
[81] Getenga, Z. M., Kengara, F. O. (2004). Mineralization of glyphosate in compost-amended soil under controlled conditions. Bulletin of environmental contamination and toxicology, 72(2), 266-275.
[82] Getenga, Z. M. (2003). Enhanced mineralization of atrazine in compost-amended soil in laboratory studies. Bulletin of environmental contamination and toxicology, 71(5), 933-941.
[83] Barker, A. V., Bryson, G. M. (2002). Bioremediation of heavy metals and organic toxicants by composting. The scientific world journal, 2, 407-420.
[84] Wanner, U., Führ, F., Burauel, P. (2005). Influence of the amendment of corn straw on the degradation behaviour of the fungicide dithianon in soil. Environmental pollution, 133(1), 63-70.
[85] Breugelmans, P., Barken, K. B., Tolker-Nielsen, T., Hofkens, J., Dejonghe, W., Springael, D. (2008). Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS microbiology ecology, 64(2), 271-282.
[86] Breugelmans, P., Horemans, B., Hofkens, J., Springael, D. (2010). Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. Research in microbiology, 161(8), 660-666.
[87] Sadegh-Zadeh, F. (2010). Sorption – desorption, degradation and leaching of napropamide in selected Malaysian soils. PhD thesis. Universiti Putra Malaysia.161 pages.
[88] Tang, X., Huang, W., Guo, J., Yang, Y., Tao, R., & Xu, F. (2017). Use of Fe-impregnated Biochar to Efficiently Sorb Chlorpyrifos, reduce uptake by Allium fistulosum L. and Enhance Microbial Community diversity. Journal of agricultural and food chemistry.65(26),5238-5243.
[89] Zhang, X., Sarmah, A. K., Bolan, N. S., He, L., Lin, X., Che, L., Wang, H. (2016). Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere, 142, 28-34.
[90] Donaldson, S. G., Miller, G. C. (1996). Coupled transport and photodegradation of napropamide in soils undergoing evaporation from a shallow water table. Environmental science and technology, 30(3), 924-930.
[91] Gerstl, Z., Yaron, B. (1983). Behavior of bromacil and napropamide in soils: II. Distribution after application from a point source. Soil science society of America journal, 47(3), 478-483.
[92] Williams, C. F., Agassi, M., Letey, J., Farmer, W. J., Nelson, S. D., Ben-Hur, M. (2000). Facilitated transport of napropamide by dissolved organic matter through soil columns. Soil science society of America journal, 64(2), 590-594.
[93] Van Genuchten, M. T., Wierenga, P. J. (1976). Mass transfer studies in sorbing porous media I. Analytical solutions. Soil science society of America journal, 40(4), 473-480.
[94] Reichenberger, S., Amelung, W., Laabs, V., Pinto, A., Totsche, K. U., Zech, W. (2002). Pesticide displacement along preferential flow pathways in a Brazilian Oxisol Geoderma, 110(1), 63-86.
[95]Jury, W. A., Elabd, H., Resketo, M. (1986). Field study of napropamide movement through unsaturated soil. Water resources research, 22(5), 749-755.
[96] Neurath, S. K., Sadeghi, A. M., Shirmohammadi, A., Isensee, A. R., Torrents, A. (2004). Atrazine distribution measured in soil and leachate following infiltration conditions. Chemosphere, 54(4), 489-496.
[97] Si, Y., Zhang, J., Wang, S., Zhang, L., Zhou, D. (2006). Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma, 130(1), 66-76.
[98] Kung, K. J., Steenhuis, T. S., Kladivko, E. J., Gish, T. J., Bubenzer, G., Helling, C. S. (2000). Impact of preferential flow on the transport of adsorbing and non-adsorbing tracers. Soil science society of America journal, 64(4), 1290-1296.
[99] Williams, C. F., Letey, J., Farmer, W. J. (2002). Molecular weight of dissolved organic matter–napropamide complex transported through soil columns. Journal of environmental quality, 31(2), 619-627.
[100] Gerstl, Z., Saltzman, S., Kliger, L., Yaron, B. (1981). Distribution of herbicides in soil in a simulated drip irrigation system. Irrigation science, 2(3), 155-166.
[101] Gerstl, Z., Albasel, N. (1984). Field distribution of pesticides applied via a drip irrigation system. Irrigation science, 5(3), 181-193.
[102] Ghodrati, M., Jury, W. A. (1992). A field study of the effects of soil structure and irrigation method on preferential flow of pesticides in unsaturated soil. Journal of contaminant Hydrology, 11(1-2), 101-125.
[103] Anyusheva, M., Lamers, M., La, N., Nguyen, V. V., Streck, T. (2016). Persistence and leaching of two pesticides in a paddy soil in northern Vietnam. Clean–soil, air, water, 44(7), 858-866.
[104] García-Jaramillo, M., Cox, L., Cornejo, J., Hermosín, M. C. (2014). Effect of soil organic amendments on the behavior of bentazone and tricyclazole. Science of the total environment, 466, 906-913.
[105] Varsha, J., Anjana, S., Pankaj, S. A., Chandra, S. P. Efficacy of Cereal Straw and its Conjoint use with Microbial consortium in Reducing the Leaching of Chlorpyrifos: A soil column study. Research journal of chemical sciences 5, 9-14.