[1] Kalin, M., Fyson, A., Wheeler, W. N. (2006). The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Science of the total environment, 366(2), 395-408.
[2] Matlock, M. M., Howerton, B. S., Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water research, 36(19), 4757-4764.
[3] Mayer, K. U., Benner, S. G., Blowes, D. W. (2006). Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage. Journal of contaminant hydrology, 85(3), 195-211.
[4] Motsi, T., Rowson, N. A., Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International journal of mineral processing, 92(1), 42-48.
[5] Rios, C. A., Williams, C. D., Roberts, C. L. (2008). Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Journal of hazardous materials, 156(1), 23-35.
[6] Sheoran, A. S., Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals engineering, 19(2), 105-116.
[7] Johnson, D. B., Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the total environment, 338(1), 3-14.
[8] Hasanzadeh, R., Moghadam, P. N., Bahri-Laleh, N., Sillanpää, M. (2017). Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@ Fe3O4 nanoparticles. Journal of colloid and interface science, 490, 727-746.
[9] Ivanets, A. I., Srivastava, V., Kitikova, N. V., Shashkova, I. L., Sillanpää, M. (2017). Non-apatite Ca-Mg phosphate sorbent for removal of toxic metal ions from aqueous solutions. Journal of environmental chemical engineering, 5(2), 2010-2017.
[10] Mahida, V. P., Patel, M. P. (2014). Synthesis of new superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel for effective removal of As (V) and Cd (II) toxic metal ions. Chinese chemical letters, 25(4), 601-604
[11] Saravanan, P., Vinod, V. T. P., Sreedhar, B., Sashidhar, R. B. (2012). Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Materials science and engineering: C, 32(3), 581-586.
[12] Wei, X., Viadero, R. C. (2007). Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering. Colloids and surfaces A: Physicochemical and engineering aspects, 294(1), 280-286.
[13] Mauter, M. S., Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental science and technology, 42(16), 5843-5859.
[14] Pradeep, T. (2009). Noble metal nanoparticles for water purification: a critical review. Thin solid films, 517(24), 6441-6478.
[15] Ruparelia, J. P., Duttagupta, S. P., Chatterjee, A. K., Mukherji, S. O. U. M. Y. A. (2008). Potential of carbon nanomaterials for removal of heavy metals from water. Desalination, 232(1), 145-156.
[16] Giraldo, L., Erto, A., Moreno-Piraján, J. C. (2013). Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption, 19(2-4), 465-474.
[17] Akhbarizadeh, R., Shayestefar, M. R., Darezereshki, E. (2014). Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD. Mine water and the environment, 33(1), 89-96.
[18] Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., Zboril, R. (2011). Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere, 82(8), 1178-1184.
[19] Dreyer, D. R., Park, S., Bielawski, C. W., Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
[20] Zhao, G., Li, J., Ren, X., Chen, C., Wang, X. (2011). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental science and technology, 45(24), 10454-10462.
[21] Sreeprasad, T. S., Maliyekkal, S. M., Lisha, K. P., Pradeep, T. (2011). Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. Journal of hazardous materials, 186(1), 921-931.
[22] Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Wang, X. (2011). Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton transactions, 40(41), 10945-10952.
[23] Yang, S. T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Cao, A. (2010). Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of colloid and interface science, 351(1), 122-127.
[24] Rao, G. P., Lu, C., Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation and purification technology, 58(1), 224-231.
[25] Stafiej, A., Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and purification technology, 58(1), 49-52.
[26] Agboola, A. E., Pike, R. W., Hertwig, T. A., Lou, H. H. (2007). Conceptual design of carbon nanotube processes. Clean technologies and environmental policy, 9(4), 289-311.
[27] Rahimi, E., Mohaghegh, N. (2016). Removal of toxic metal ions from sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal–organic framework. Mine water and the environment, 35(1), 18-28.
[28] Mohaghegh, N., Tasviri, M., Rahimi, E., Gholami, M. R. (2015). Comparative studies on Ag3PO4/BiPO4–metal-organic framework–graphene-based nanocomposites for photocatalysis application. Applied surface science, 351, 216-224.
[29] Mohaghegh, N., Faraji, M., Gobal, F., Gholami, M. R. (2015). Electrodeposited multi-walled carbon nanotubes on Ag-loaded TiO2 nanotubes/Ti plates as a new photocatalyst for dye degradation. RSC advances, 5(56), 44840-44846.
[30] Motsi, T., Rowson, N. A., Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International journal of mineral processing, 92(1), 42-48.
[31] Wang, F., Pan, Y., Cai, P., Guo, T., Xiao, H. (2017). Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresource technology. 241, 482-490.