[1] Chandrappa, S., Vinaya, K., Ramakrishnappa, T.,Rangappa, K. S. (2010). An efficient method for aryl nitro reduction and cleavage of azo compounds using iron powder/calcium chloride. Synlett, 2010(20), 3019-3022.
[2] Kelly, S. M., Lipshutz, B. H. (2013). Chemoselectivereductions of nitroaromatics in water at room temperature.Organic letters, 16(1), 98-101.
[3] Wienhöfer, G., Sorribes, I., Boddien, A., Westerhaus, F., Junge, K., Junge, H., Beller, M. (2011). General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base Journal of the American chemical society, 133(32), 12875-12879.
[4] Yuste, F., Saldaña, M., Walls, F. (1982). Selective reduction of aromatic nitro compounds containing Oand
N-benzyl groups with hydrazine and raney nickel. Tetrahedron letters, 23(2), 147-148.
[5] Ram, S., Ehrenkaufer, R. E. (1984). A general procedure for mild and rapid reduction of aliphatic and aromatic
nitro compounds using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron letters, 25(32), 3415-3418.
[6] Di Gioia, M. L., Leggio, A., Le Pera, A., Liguori, A., Napoli, A., Perri, F., Siciliano, C. (2005). Determination by gas
chromatography/mass spectrometry of pphenylenediamine in hair dyes after conversion to an imine derivative. Journal of chromatography A, 1066(1), 143-148.
[7] Larock, R. C. (1989). Comprehensive organic transformations, VCH Publishers Inc., New York.
[8] Kabalka, G. W., Varma, R. S. (1991). Reduction of nitro and nitroso compounds. Comprehensive organic synthesis, 8, 363-379.
[9] Sudarjanto, G., Keller-Lehmann, B., Keller, J. (2006). Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. Journal of hazardous materials, 138(1), 160-168.
[10] Gowda, S., Abiraj, K., Gowda, D. C. (2002). Reductive cleavage of azo compounds catalyzed by commercial
zinc dust using ammonium formate or formic acid. Tetrahedron letters, 43(7), 1329-1331.
[11] Kumará Verma, P. (2012). Zinc phthalocyanine with PEG-400 as a recyclable catalytic system for selective reduction of aromatic nitro compounds. Green chemistry, 14(8), 2289-2293.
[12] Sharma, U., Kumar, P., Kumar, N., Kumar, V., Singh, B. (2010). Highly chemo‐and regioselective reduction of
aromatic Nitro compounds catalyzed by recyclable S. Keshipour et al. Copper (II) as well as Cobalt (II) phthalocyanines. Advanced synthesis and catalysis, 352(11‐12), 1834-1840.
[13] Stiles, M., Finkbeiner, H. L. (1959). Chelation as a driving force in synthesis. A new route to α-nitro acids and α-amino acids. Journal of the American chemical society, 81(2), 505-506.
[14] Suchy, M., Winternitz, P., Zeller, M. (1991). Heterocyclic compounds, U.S. Patent, US5266554A.
[15] Junge, K., Wendt, B., Shaikh, N., Beller, M. (2010). Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chemical communications, 46(10), 1769-1771.
[16] Downing, R. S., Kunkeler, P. J., Van Bekkum, H. (1997). Catalytic syntheses of aromatic amines. Catalysis today, 37(2), 121-136.
[17] Corma, A., Serna, P., Concepción, P., Calvino, J. J. (2008). Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. Journal of the American chemical society, 130(27), 8748-8753.
[18] Blaser, H. U., Steiner, H., Studer, M. (2009). Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem, 1(2), 210-221
[19] Burke, S. D., Danheiser, R. L. (Eds.). (1999). Oxidizing and reducing agents. Chichester: Wiley.
[20] Satoh, T., Suzuki, S., Suzuki, Y., Miyaji, Y., Imai, Z. (1969). Reduction of organic compounds with sodium borohydride-transition metal salt systems: Reduction of organic nitrile, nitro and amide compounds to primary amines. Tetrahedronletters, 10(52), 4555-4558.
[21] Yoo, S. E., Lee, S. H. (1990). Reduction of organic compounds with sodium borohydride-copper (II) sulfate system. Synlett, 1990(07), 419-420.
[22] Wu, F., Qiu, L. G., Ke, F., Jiang, X. (2013). Copper nanoparticles embedded in metal–organic framework MIL-101 (Cr) as a high performance catalyst for reduction of aromatic nitro compounds. Inorganic chemistry communications, 32, 5-8.
[23] Guo, F., Ni, Y., Ma, Y., Xiang, N., Liu, C. (2014). Flowerlike Bi 2 S 3 microspheres: facile synthesis and application in the catalytic reduction of 4-nitroaniline. New journal of chemistry, 38(11), 5324-5330.
[24] Osby, J. O., Ganem, B. (1985). Rapid and efficient reduction of aliphatic nitro compounds to amines. Tetrahedron letters, 26(52), 6413-6416.
[25] Németh, J., Kiss, Á., Hell, Z. (2013). Palladium-catalysed transfer hydrogenation of aromatic nitro compounds—an unusual chain elongation. Tetrahedron letters, 54(45), 6094-6096.
[26] Obraztsova, I. I., Eremenko, N. K., Simenyuk, G. Y., Eremenko, A. N., Tryasunov, B. G. (2012). Bimetallic catalysts for the hydrogenation of aromatic nitro compounds. Solid fuel chemistry, 46(6), 364-367.
[27] Thatte, C. S., Rathnam, M. V., Pise, A. C. (2014). Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the β-isophorone oxidation. Journal of chemical sciences, 126(3), 727-737.
[28] Shaabani, A., Boroujeni, M. B., Sangachin, M. H. (2015). Cobalt-chitosan: Magnetic and biodegradable heterogeneous catalyst for selective aerobic oxidation of alkyl arenes and alcohols. Journal of chemical sciences, 127(11), 1927-1935.
[29] Keshipour, S., Shojaei, S., Shaabani, A. (2013). Palladium nano-particles supported on ethylenediamine-functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose, 20(2), 973-980.
[30] Shaabani, A., Keshipour, S., Hamidzad, M., Seyyedhamzeh, M. (2014). Cobalt (II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols. Journal of chemical sciences, 126(1), 111-115.
[31] Keshipour, S., Shaabani, A. (2014). Copper (I) and palladium nanoparticles supported on ethylenediamine‐functionalized cellulose as an efficient catalyst for the 1, 3‐dipolar cycloaddition/direct arylation sequence. Applied organometallic chemistry, 2(28), 116-119.
[32] Keshipour, S., KalamKhalteh, N. (2016). Oxidation of ethylbenzene to styrene oxide in the presence of cellulose‐supported Pd magnetic nanoparticles. Applied organometallic chemistry, 30(8), 653-656.
[33] Shaabani, A., Keshipour, S., Hamidzad, M., Shaabani, S. (2014). Cobalt (II) phthalocyanine covalently anchored to cellulose as a recoverable and efficient catalyst for the aerobic oxidation of alkyl arenes and alcohols. Journal of molecular catalysis A: Chemical, 395, 494-499.
[34] Keshipour, S., Adak, K. (2016). Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC advances, 6(92), 89407-89412.
[35] El-Hout, S. I., El-Sheikh, S. M., Hassan, H. M., Harraz, F. A., Ibrahim, I. A., El-Sharkawy, E. A. (2015). A green chemical route for synthesis of graphene supported palladium nanoparticles: A highly active and recyclable catalyst for reduction of nitrobenzene. Applied catalysis A: General, 503, 176-185.
[36] Piña, S., Cedillo, D. M., Tamez, C., Izquierdo, N., Parsons, J. G., Gutierrez, J. J. (2014). Reduction of nitrobenzene derivatives using sodium borohydride and transition metal sulfides. Tetrahedron letters, 55(40), 5468-5470.
[37] Pogorelić, I., Filipan-Litvić, M., Merkaš, S., Ljubić, G., Cepanec, I., Litvić, M. (2007). Rapid, efficient and selective reduction of aromatic nitro compounds with sodium borohydride and Raney nickel. Journal of molecular catalysis A: Chemical, 274(1), 202-207.
[38] Setamdideh, D., Khezri, B., Mollapour, M. (2011). Convenient reduction of nitro compounds to their corresponding Amines with promotion of NaBH4/Ni(OAc)2.4H2O system in wet CH3CN. Oriental journal of chemistry, 27(3), 991-996.