[1] Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Tovar, M. (2012). The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 336, 893-897.
[2] Catino, S. C., Farris, E. (1985). Concise encyclopedia of chemical technology. New York: John Wiley and Sons.
[3] Simpson, A. P., Lutz, A. E. (2007). Exergy analysis of hydrogen production via steam methane reforming. International journal of hydrogen energy, 32(18), 4811-4820.
[4] Koempel, H., Liebner, W. (2007). Lurgi's Methanol To Propylene (MTP®) Report on a successful commercialization. Studies in surface science and catalysis, 167, 261-267.
[5] Huber, F., Venvik, H., Rønning, M., Walmsley, J., Holmen, A. (2008). Preparation and characterization of nanocrystalline, high-surface area Cu Ce Zr mixed oxide catalysts from homogeneous co-precipitation. Chemical engineering journal, 137(3), 686-702.
[6] Lekhal, A., Glasser, B. J., Khinast, J. G. (2001). Impact of drying on the catalyst profile in supported impregnation catalysts. Chemical engineering science, 56(15), 4473-4487.
[7] Bao, J., Liu, Z., Zhang, Y., Tsubaki, N. (2008). Preparation of mesoporous Cu/ZnO catalyst and its application in low-temperature methanol synthesis. Catalysis communications, 9(5), 913-918.
[8] Shi, L., Tan, Y. S., Tsubaki, N. (2012). A solid‐state combustion method towards Metallic Cu–ZnO catalyst without further reduction and its application to low‐temperature Methanol synthesis. ChemCatChem catalysis, 4(6), 863-871.
[9] Casey, T., Chapman, G., 1974. Low temperature methanol synthesis catalyst, US Patent 3 790 505.
[10] Ladebeck, J., Koy, J., Regula, T., 2010. Cu/Zn/Al catalyst for methanol synthesis. US Patent 7 754 651.
[11] Schoenthal, Galeon W., and Lynn H. Slaugh., 1986. Methanol synthesis catalyst, U.S. Patent 4 565 803.
[12] Schneider, M., Kochloefl, K., Ladebeck, J., 1985. Catalyst for methanol synthesis and method of preparing the catalyst, US Patent 4 535 071.
[13] Dienes, E. K., Coleman, R. L., Hausberger, A. L., 1981. Catalyst for the synthesis of methanol, US Patent 4 279 781.
[14] Sun, Y., Sermon, P. A. (1993). Carbon monoxide hydrogenation over ZrO2 and Cu/ZrO2. Journal of the chemical society, chemical communications, (16), 1242-1244.
[15] Nitta, Y., Suwata, O., Ikeda, Y., Okamoto, Y., manaka, T. (1994). Copper-zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO2 catalysts. Catalysis letters, 26(3), 345-354.
[16] Mierczynski, P., Kaczorowski, P., Ura, A., Maniukiewicz, W., Zaborowski, M., Ciesielski, R., Maniecki, T. P. (2014). Promoted ternary CuO-ZrO2-Al2O3 catalysts for methanol synthesis. Central european journal of chemistry, 12(2), 206-212.
[17] Lachowska, M., Skrzypek, J. (2004). Methanol synthesis from carbon dioxide and hydrogen over Mn-promoted Copper/Zinc/Zirconia catalysts. Reaction kinetics and catalysis letters, 83(2), 269-273.
[18] Chen, H., Yin, A., Guo, X., Dai, W. L., Fan, K. N. (2009). Sodium hydroxide–Sodium Oxalate-assisted co-precipitation of highly active and stable Cu/ZrO2 catalyst in the partial oxidation of Methanol to Hydrogen. Catalysis letters, 131(3-4), 632-642.
[19] Gao, P., Xie, R., Wang, H., Zhong, L., Xia, L., Zhang, Z., Sun, Y. (2015). Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide. Journal of CO2 utilization, 11, 41-48.
[20] Zhang, L., Zhang, Y., Chen, S. (2012). Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Applied catalysis A: General, 415, 118-123.
[21] Tang, X. B., Noritatsu, T., Xie, H. J., Han, Y. Z., Tan, Y. S. (2014). Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis. Journal of fuel chemistry and technology, 42(6), 704-709.
[22] Słoczyński, J., Grabowski, R., Olszewski, P., Kozłowska, A., Stoch, J., Lachowska, M., Skrzypek, J. (2006). Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Applied catalysis A: General, 310, 127-137.
[23] Słoczyński, J., Grabowski, R., Kozłowska, A., Olszewski, P., Lachowska, M., Skrzypek, J., Stoch, J. (2003). Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2. Applied catalysis A: General, 249(1), 129-138.
[24] Yang, C., Ma, Z., Zhao, N., Wei, W., Hu, T., Sun, Y. (2006). Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catalysis today, 115(1), 222-227.
[25] Poels, E. K., Brands, D. S. (2000). Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction. Applied catalysis A: General, 191(1), 83-96.
[26] Meshkini, F., Taghizadeh, M., Bahmani, M. (2010). Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design. Fuel, 89(1), 170-175.
[27] Park, Colin William, et al., 2015. Methanol synthesis process. US Patent 8 957 117.
[28] Matsumura, Y., & Shen, W. J., 2002. Catalyst for the synthesis of methanol and a method for the synthesis of methanol, US Patent 6 342 538.
[29] Takeuchi, M., Mabuse, H., Watanabe, T., Umeno, M., Matsuda, T., Mori, K., 2000. Copper-based catalyst and method for production thereof, US Patent 6 048 820.
[30] Fukui, H., Kobayashi, M., Yamaguchi, T., Arakawa, H., Okabe, K., Sayama, K., & Kusama, H., 2000. Catalyst for methanol synthesis and reforming, US Patent 6 114 279.
[31] Cameron, C., Chaumette, P., Dang Vu, Q., Bousquet, J., Tournier-Lasserve, J., Desgrandchamps, G., 1996. Process for the production of at least one alkyl tertiobutyl ether from natural gas, US Patent 5 523 493.
[32] Fang, D., Liu, Z., Meng, S., Wang, L., Xu, L., Wang, H. (2005). Influence of aging time on the properties of precursors of CuO/ZnO catalysts for methanol synthesis. Journal of natural gas chemistry, 14(2), 107-114.