[1] Habibi, M. H., Parhizkar, J. (2015). Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 150, 879-885.
[2] Bhukal, S., Singhal, S. (2014). Magnetically separable copper substituted cobalt–zinc nano-ferrite photocatalyst with enhanced photocatalytic activity.Materials science in semiconductor processing, 26, 467-476.
[3] Mishra, D., Senapati, K. K., Borgohain, C., Perumal, A. (2012). CoFe2O4− Fe3O4 Magnetic nanocomposites as photocatalyst for the degradation of methyl orange dye. Journal of nanotechnology, 1, 1-6.
[4] Mourão, H. A., Malagutti, A. R., Ribeiro, C. (2010). Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Applied catalysis A: General, 382(2), 284-292.
[5] Hong, Y., Ren, A., Jiang, Y., He, J., Xiao, L., Shi, W. (2015). Sol–gel synthesis of visible-light-driven Ni(1− x) Cu(x) Fe2O4 photocatalysts for degradation of tetracycline. Ceramics international, 41(1), 1477-1486.
[6] Amir, M., Kurtan, U., Baykal, A. (2015). Rapid color degradation of organic dyes by Fe3O4@His Ag recyclable magnetic nanocatalyst. Journal of industrial and engineering Chemistry, 27, 347-353.
[7] Chen, F., Liu, Z., Liu, Y., Fang, P., Dai, Y. (2013). Enhanced adsorption and photocatalytic degradation of high-concentration methylene blue on Ag 2 O-modified TiO2-based nanosheet. Chemical engineering journal, 221, 283-291.
[8] Singh, S., Khare, N. (2015). Magnetically separable, CoFe2O4 decorated CdS nanorods for enhanced visible light driven photocatalytic activity. Materials letters, 161, 64-67.
[9] Huixia, F., Baiyi, C., Deyi, Z., Jianqiang, Z., Lin, T. (2014). Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation. Journal of magnetism and magnetic materials, 356, 68-72.
[10] Alexander, L., Klug, H. P. (1950). Determination of crystallite size with the X‐Ray spectrometer. Journal of applied physics, 21(2), 137-142.
[11] Yu, H., Liu, R., Wang, X., Wang, P., Yu, J. (2012). Enhanced visible-light photocatalytic activity of Bi 2 WO 6 nanoparticles by Ag2O cocatalyst. Applied catalysis B: Environmental, 111, 326-333.
[12] Wang, H., Li, J., Huo, P., Yan, Y., Guan, Q. (2016). Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation. Applied surface science, 366, 1-8.
[13] You, Y., Wan, L., Zhang, S., Xu, D. (2010). Effect of different doping methods on microstructure and photo-catalytic activity of Ag2O–TiO2 nanofibers. Materials research bulletin, 45(12), 1850-1854.
[14] Shi, B. N., Wan, J. F., Liu, C. T., Yu, X. J., Ma, F. W. (2015). Synthesis of CoFe2O4/MCM-41/TiO2 composite microspheres and its performance in degradation of phenol. Materials science in semiconductor processing, 37, 241-249.
[15] Sathishkumar, P., Mangalaraja, R. V., Anandan, S., Ashokkumar, M. (2013).CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chemical engineering journal, 220, 302-310.
[16] Harraz, F. A., Mohamed, R. M., Rashad, M. M., Wang, Y. C., Sigmund, W. (2014). Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceramics international, 40(1), 375-384.
[17] Shi, B. N., Wan, J. F., Liu, C. T., Yu, X. J., Ma, F. W. (2015). Synthesis of CoFe2O4/MCM-41/TiO2 composite microspheres and its performance in degradation of phenol. Materials science in semiconductor processing, 37, 241-249.
[18] Gan, L., Shang, S., Yuen, C. W. M., Jiang, S. X., Hu, E. (2015). Hydrothermal synthesis of magnetic CoFe2O4/graphene nanocomposites with improved photocatalytic activity. Applied surface science, 351, 140-147.[19] Ma, J., Yang, M., Sun, Y., Li, C., Li, Q., Gao, F, Chen, J. (2014). Fabrication of Ag/TiO2 nanotube array with enhanced photo-catalytic degradation of aqueous organic pollutant. Physica E: Low-dimensional systems and nanostructures, 58, 24-29.
[21] Yavari, S., Mahmodi, N. M., Teymouri, P., Shahmoradi, B., Maleki, A. (2016). Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. Journal of the Taiwan institute of chemical engineers, 59, 320-329.