[1] Butter, T. J., Evison, L. M., Hancock, I. C., Holland, F. S., Matis, K. A., Philipson, A., Zouboulis, A. I. (1998). The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water research, 32(2), 400-406.
[2] Jiang, T., Liu, W., Mao, Y., Zhang, L., Cheng, J., Gong, M., Zhao, Q. (2015). Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite. Chemical engineering journal, 259, 603-610.
[3] Kobya, M., Demirbas, E., Senturk, E., Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource technology, 96(13), 1518-1521.
[4] Nadaroglu, H., Kalkan, E., Demir, N. (2010). Removal of copper from aqueous solution using red mud. Desalination, 251(1), 90-95.
[5] Li, Q., Zhai, J., Zhang, W., Wang, M., Zhou, J. (2007). Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of hazardous materials, 141(1), 163-167.
[6] Amarasinghe, B. M. W. P. K., Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical engineering journal, 132(1), 299-309.
[7] Sarioglu, M., Atay, Ü. A., Cebeci, Y. (2005). Removal of copper from aqueous solutions by phosphate rock. Desalination, 181(1), 303-311.
[8] Hou, J., Wen, Z., Jiang, Z., Qiao, X. (2014). Study on combustion and emissions of a turbocharged compression ignition engine fueled with dimethyl ether and biodiesel blends. Journal of the energy institute, 87(2), 102-113.
[9] Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in colloid and interface science, 166(1), 36-59.
[10] Runtti, H., Tuomikoski, S., Kangas, T., Lassi, U., Kuokkanen, T., Rämö, J. (2014). Chemically activated carbon residue from biomass gasification as a sorbent for iron (II), copper (II) and nickel (II) ions. Journal of water process engineering, 4, 12-24.
[11] Godino-Salido, M. L., Santiago-Medina, A., Arranz-Mascarós, P., López-Garzón, R., Gutiérrez-Valero, M. D., Melguizo, M., López-Garzón, F. J. (2014). Novel active carbon/crown ether derivative hybrid material for the selective removal of Cu (II) ions: The crucial role of the surface chemical functions. Chemical engineering science, 114, 94-104.
[12] Larous, S., Meniai, A. H. (2012). Removal of copper (II) from aqueous solution by agricultural by-products-sawdust. Energy procedia, 18, 915-923.
[13] Hu, X. J., Liu, Y. G., Wang, H., Chen, A. W., Zeng, G. M., Liu, S. M., Zhou, L. (2013). Removal of Cu (II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separation and purification technology, 108, 189-195.
[14] Zacaroni, L. M., Magriotis, Z. M., das Graças Cardoso, M., Santiago, W. D., Mendonça, J. G., Vieira, S. S., Nelson, D. L. (2015). Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cachaça. Food control, 47, 536-544.
[15] Wen, Y., Ma, J., Chen, J., Shen, C., Li, H., Liu, W. (2015). Carbonaceous sulfur-containing chitosan–Fe (III): a novel adsorbent for efficient removal of copper (II) from water. Chemical engineering journal, 259, 372-380.
[16] Kalavathy, M. H., Karthikeyan, T., Rajgopal, S., Miranda, L. R. (2005). Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of colloid and interface science, 292(2), 354-362.
[17] Cho, H., Oh, D., Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fly ash. Journal of hazardous materials, 127(1), 187-195.
[18] SenthilKumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., Sivanesan, S. (2011). Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell. Desalination, 266(1), 63-71.
[19] Ajmal, M., Khan, A. H., Ahmad, S., Ahmad, A. (1998). Role of sawdust in the removal of copper (II) from industrial wastes. Water research, 32(10), 3085-3091.
[20] Benaissa, H., Elouchdi, M. A. (2007). Removal of copper ions from aqueous solutions by dried sunflower leaves. Chemical engineering and processing: Process intensification, 46(7), 614-622.
[21] Igberase, E., Osifo, P., Ofomaja, A. (2014). The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. Journal of environmental chemical engineering, 2(1), 362-369.[22] Zhou, Y. T., Nie, H. L., Branford-White, C., He, Z. Y., Zhu, L. M. (2009). Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Journal of colloid and interface science, 330(1), 29-37.
[23] Wen, Y., Ma, J., Chen, J., Shen, C., Li, H., Liu, W. (2015). Carbonaceous sulfur-containing chitosan–Fe (III): a novel adsorbent for efficient removal of copper (II) from water. Chemical engineering journal, 259, 372-380.
[24] Machida, M., Yamazaki, R., Aikawa, M., Tatsumoto, H. (2005). Role of minerals in carbonaceous adsorbents for removal of Pb (II) ions from aqueous solution. Separation and purification technology, 46(1), 88-94.
[25] Salam, M. A., Al-Zhrani, G., Kosa, S. A. (2012). Simultaneous removal of copper (II), lead (II), zinc (II) and cadmium (II) from aqueous solutions by multi-walled carbon nanotubes. Comptes rendus chimie, 15(5), 398-408.
[26] Mi, X., Huang, G., Xie, W., Wang, W., Liu, Y., Gao, J. (2012). Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon, 50(13), 4856-4864.
[27] Olgun, A., Atar, N. (2011). Removal of copper and cobalt from aqueous solution onto waste containing boron impurity. Chemical engineering journal, 167(1), 140-147.
[28] Moussavi, G., Alahabadi, A., Yaghmaeian, K., Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH 4 Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical engineering journal, 217, 119-128.
[29] Kim, J. W., Sohn, M. H., Kim, D. S., Sohn, S. M., Kwon, Y. S. (2001). Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion. Journal of hazardous materials,85(3), 301-315.
[30] Kurniawan, T. A., Chan, G. Y., Lo, W. H., Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the total environment, 366(2), 409-426.
[31] Rao, M. M., Reddy, D. K., Venkateswarlu, P., Seshaiah, K. (2009). Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by product/waste. Journal of environmental management, 90(1), 634-643.
[32] Ayyappan, R., Sophia, A. C., Swaminathan, K., Sandhya, S. (2005). Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes. Process biochemistry, 40(3), 1293-1299.
[33] Rao, M. M., Ramesh, A., Rao, G. P. C., Seshaiah, K. (2006). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of hazardous materials, 129(1), 123-129.
[34] Hasar, H. (2003). Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of hazardous materials, 97(1), 49-57.
[35] Ramos, R. L., Jacome, L. B., Barron, J. M., Rubio, L. F., Coronado, R. G. (2002). Adsorption of zinc (II) from an aqueous solution onto activated carbon. Journal of hazardous materials, 90(1), 27-38.
[36] Selvi, K., Pattabhi, S., Kadirvelu, K. (2001). Removal of Cr (VI) from aqueous solution by adsorption onto activated carbon. Bioresource technology, 80(1), 87-89.
[37] Omri, A., Benzina, M. (2012). Removal of manganese (II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor: Ziziphus spina-christi seeds. Alexandria engineering journal, 51(4), 343-350.
[38] Budinova, T., Savova, D., Tsyntsarski, B., Ania, C. O., Cabal, B., Parra, J. B., Petrov, N. (2009). Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied surface science, 255(8), 4650-4657.
[39] Yang, T., Lua, A. C. (2006). Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Materials chemistry and physics, 100(2), 438-444.
[40] Imamoglu, M., Tekir, O. (2008). Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 228(1), 108-113.
[41] Wu, F. C., Tseng, R. L., Juang, R. S. (2001). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water research, 35(3), 613-618.
[42] Han, R., Zhang, J., Zou, W., Shi, J., Liu, H. (2005). Equilibrium biosorption isotherm for lead ion on chaff. Journal of hazardous materials, 125(1), 266-271.
[43] Wu, Q., Chen, J., Clark, M., Yu, Y. (2014). Adsorption of copper to different biogenic oyster shell structures. Applied surface science, 311, 264-272.
[44] Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M. G., Taheri, H. (2010). Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. Journal of hazardous materials, 177(1), 950-955.
[45] Hamdaoui, O., Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of hazardous materials, 147(1), 381-394.
[46] Dang, V. B. H., Doan, H. D., Dang-Vu, T., Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresource technology, 100(1), 211-219.