[1] Karthikeyan, R., Hutchinson, S. L. L., Erickson, L. E. (2012). Biodegradation of tertiary butyl mercaptan in water. Journal of bioremediation and biodegradation, 2012.
[2] Suslick, K. S. (1989). The chemical effects of ultrasound. Scientific American, 260(2), 80-86.
[3] Hao, H., Wu, M., Chen, Y., Yin, Y., Lü, Z. (2003). Cavitation‐induced pyrolysis of toxic chlorophenol by high‐frequency ultrasonic irradiation. Environmental toxicology, 18(6), 413-417.
[4] Teo, K. C., Xu, Y., Yang, C. (2001). Sonochemical degradation for toxic halogenated organic compounds. Ultrasonics sonochemistry, 8(3), 241-246.
[5] Rappert, S., Müller, R. (2005). Microbial degradation of selected odorous substances. Waste management, 25(9), 940-954.
[6] IPSC, and CEC (2004). International Chemical Safety Card on t-Butyl Mercaptan.
[7] Pang, Y. L., Abdullah, A. Z., Bhatia, S. (2011). Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination, 277(1), 1-14.
[8] Bingham, E., Cohrssen, B., Powell, C. H. (2001). Patty's toxicology. Volume 2: toxicological issues related to metals, neurotoxicology and radiation metals and metal compounds (No. Ed. 5). John Wiley and Sons.
[9] Sahu, A. K. (2007, September). Present scenario of municipal solid waste (MSW) dumping grounds in India. In proceedings of the international conference on sustainable solid waste management (pp. 5-7).
[10] Basturk, E., Karatas, M. (2014). Advanced oxidation of reactive blue 181 solution: A comparison between fenton and sono-fenton process. Ultrasonics sonochemistry, 21(5), 1881-1885.
[11] Wang, C., Shih, Y. (2015). Degradation and detoxification of diazinon by sono-Fenton and sono-Fenton-like processes. Separation and purification technology, 140, 6-12.
[12] Căilean, D., Barjoveanu, G., Teodosiu, C., Pintilie, L., Dăscălescu, I. G., Păduraru, C. (2015). Technical performances of ultrafiltration applied to municipal wastewater treatment plant effluents. Desalination and water treatment, 56(6), 1476-1488.
[13] Wang, C., Liu, C. (2014). Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process. Journal of environmental sciences, 26(6), 1332-1339.
[14] Cailean, D., Teodosiu, C., Friedl, A. (2014). Integrated Sono-Fenton ultrafiltration process for 4-chlorophenol removal from aqueous effluents: assessment of operational parameters (Part 1). Clean technologies and environmental policy, 16(6), 1145-1160.
[15] Cailean, D., Wukovits, W., Teodosiu, C., Ungureanu, F., Friedl, A. (2014). Integrated Sono-Fenton ultrafiltration process for 4-chlorophenol removal from aqueous effluents: process modeling and simulation Part 2. Clean technologies and environmental policy, 16(6), 1161-1177.
[16] Nejumal, K. K., Manoj, P. R., Aravind, U. K., Aravindakumar, C. T. (2014). Sonochemical degradation of a pharmaceutical waste, atenolol, in aqueous medium. Environmental science and pollution research, 21(6), 4297-4308.
[17] Psillakis, E., Goula, G., Kalogerakis, N., Mantzavinos, D. (2004). Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of hazardous materials, 108(1), 95-102.
[18] Son, H. S., Choi, S. B., Khan, E., Zoh, K. D. (2006). Removal of 1, 4-dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics. Water research, 40(4), 692-698.
[19] Kastner, J. R., Das, K. C., Hu, C., McClendon, R. (2003). Effect of pH and temperature on the kinetics of odor oxidation using chlorine dioxide. Journal of the air & waste management association, 53(10), 1218-1224.
[20] Chowdhury, P., Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes–a review. Science of the total environment, 407(8), 2474-2492.
[21] Maleki, A., Mahvi, A. H., Nabizadeh, F. V. R. (2005). Ultrasonic degradation of phenol and determination of the oxidation by-products toxicity. Journal of environmental health science & engineering, 2(3), 201-206.
[22] Nagata, Y., Nakagawa, M., Okuno, H., Mizukoshi, Y., Yim, B., Maeda, Y. (2000). Sonochemical degradation of chlorophenols in water. Ultrasonics sonochemistry, 7(3), 115-120.
[23] Kim, I. K., Huang, C. P., Chiu, P. C. (2001). Sonochemical decomposition of dibenzothiophene in aqueous solution. Water research, 35(18), 4370-4378.
[24] Appaw, C., Adewuyi, Y. G. (2002). Destruction of carbon disulfide in aqueous solutions by sonochemical oxidation. Journal of hazardous materials, 90(3), 237-249.
[25] Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., & Maeda, Y. (2005). Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental science & technology, 39(9), 3388-3392.
[26] Little, C., El-Sharif, M., Hepher, M. J. (2007). The effect of solution level on calorific and dosimetric results in a 70kHz tower type sonochemical reactor. Ultrasonics sonochemistry, 14(3), 375-379.
[27] Virkutyte, J., Rokhina, E., Jegatheesan, V. (2010). Optimisation of Electro-Fenton denitrification of a model wastewater using a response surface methodology. Bioresource technology, 101(5), 1440-1446.
[28] Wu, Y., Zhou, S., Qin, F., Ye, X., Zheng, K. (2010). Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM). Journal of hazardous materials, 180(1), 456-465.
[29] Ghasempur, S., Torabi, S. F., Ranaei-Siadat, S. O., Jalali-Heravi, M., Ghaemi, N., Khajeh, K. (2007). Optimization of peroxidase-catalyzed oxidative coupling process for phenol removal from wastewater using response surface methodology. Environmental science and technology, 41(20), 7073-7079.
[30] Gopinath, K. P., Muthukumar, K., Velan, M. (2010). Sonochemical degradation of Congo red: Optimization through response surface methodology. Chemical engineering journal, 157(2), 427-433.
[31] Reilly, P. M., Blau, G. E. (1974). The use of statistical methods to build mathematical models of chemical reacting systems. The Canadian journal of chemical engineering, 52(3), 289-299.
[32] Kalantary, R. R., Badkoubi, A., Mohseni-Bandpi, A., Esrafili, A., Jorfi, S., Dehghanifard, E., Baneshi, M. M. (2013). Modification of PAHs biodegradation with humic compounds. Soil and sediment contamination: An international journal, 22(2), 185-198.
[33] Kalainesan, S., Erickson, L. E., Hutchinson, S. L. L., Urban, J. E., Karthikeyan, R. (2006). Transformation of tertiary butyl mercaptan in aerobic environments. Environmental progress, 25(3), 189-200.
[34] Kahforoushan, D., Bezaatpour, J., Fatehifar, E. (2014). Effect of various parameters on emission factors of gas flares. Iranian journal of chemical engineering, 11(3).
[35] Xie, W., Qin, Y., Liang, D., Song, D., He, D. (2011). Degradation of m-xylene solution using ultrasonic irradiation. Ultrasonics sonochemistry, 18(5), 1077-1081.
[36] Roohi, P., Fatehifar, E., Alizadeh, R. (2016). Rapid degradation of contaminated soil with 2‐methylpropane‐2‐thiol by H2O2/KMnO4/NaClO system: process modeling and optimization. Asia‐Pacific journal of chemical engineering.
[37] Kalainesan, S., Erickson, L. E., Hutchinson, S. L. L., Urban, J. E., Karthikeyan, R. (2006). Transformation of tertiary butyl mercaptan in aerobic environments. Environmental progress, 25(3), 189-200.
[38] Mahamuni, N. N., Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics sonochemistry, 17(6), 990-1003.