[1] Wang, L. K., Hung, Y. T., Lo, H. H., Yapijakis, C. (Eds.). (2004). Handbook of industrial and hazardous wastes treatment. CRC Press.
[2] Diya’uddeen, B. H., Daud, W. M. A. W., Aziz, A. A. (2011). Treatment technologies for petroleum refinery effluents: a review. Process safety and environmental protection, 89(2), 95-105.
[3] Amato, T., Wicks, J. (2009). The practical application of computational fluid dynamics to dissolved air flotation, water treatment plant operation, design and development. Journal of water supply: Research and technology-AQUA,58(1), 65-73.
[4] Crossley, I. A., Valade, M. T. (2006). A review of the technological developments of dissolved air flotation. Journal of water supply: Research and technology-aqua, 55(7-8), 479-491.
[5] Edzwald, J. K. (2007). Developments of high rate dissolved air flotation for drinking water treatment. Journal of water supply: Research and technology-aqua, 56(6-7), 399-409
[6] Edzwald, J. K. (2010). Dissolved air flotation and me. Water research, 44(7), 2077-2106.
[7] Han, M., Kim, T. I., Kwak, D. (2009). Measurement of bubble bed depth in dissolved air flotation using a particle counter. Journal of water supply: Research and technology-aqua, 58(1), 57-63.
[8] Al-Shamrani, A. A., James, A., Xiao, H. (2002). Separation of oil from water by dissolved air flotation. Colloids and surfaces A: Physicochemical and engineering aspects, 209(1), 15-26.
[9] Haarhoff, J., Bezuidenhout, E. (1999). Full-scale evaluation of activated sludge thickening by dissolved air flotation. Water SA, 25(2), 153-166.
[10] Zouboulis, A. I., Avranas, A. (2000). Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Colloids and surfaces A: Physicochemical and engineering aspects, 172(1), 153-161.
[11] Al-Shamrani, A. A., James, A., Xiao, H. (2002). Destabilisation of oil–water emulsions and separation by dissolved air flotation. Water research, 36(6), 1503-1512.
[12] Bensadok, K., Belkacem, M., Nezzal, G. (2007). Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation. Desalination, 206(1), 440-448.
[13] Tansel, B., Pascual, B. (2011). Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: Pilot-scale investigation for estuarine and near shore applications. Chemosphere, 85(7), 1182-1186.
[14] Karhu, M., Leiviskä, T., Tanskanen, J. (2014). Enhanced DAF in breaking up oil-in-water emulsions. Separation and purification technology, 122, 231-241.
[15] Esmaeili, A., Hejazi, E., Hassani, A. H. (2014). Removal of chromium by coagulation-dissolved air flotation system using ferric chloride and poly aluminum chloride (PAC) as coagulants. Water, air & soil pollution, 225(10), 1-8.
[16] Younker, J. M., Walsh, M. E. (2014). Bench-scale investigation of an integrated adsorption–coagulation–dissolved air flotation process for produced water treatment. Journal of environmental chemical engineering, 2(1), 692-697.
[17] Lenore, S.C., Arnold, E.G., & Andrew, D.E., (1999). Standard Methods for the Examination of Water and Wastewater. 20th ed., American Public Health Association, Washington, D.C.
[18] Montgomery, D.C., 2012. Design and Analysis of Experiments. 8th ed., John Wiley and Sons, New York.[19] Ross, C. C., Smith, B. M., Valentine, G. E. (2000). Rethinking dissolved air flotation (DAF) design for industrial pretreatment. Proceedings of the water environment federation, 2000(5), 43-56.
[20] Féris, L. A., Rubio, J. (1999). Dissolved air flotation (DAF) performance at low saturation pressures. Filtration and separation, 36(9), 61-65.
[21] Aziz, H. A., Alias, S., Adlan, M. N., Asaari, A. H., Zahari, M. S. (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource technology, 98(1), 218-220.