[1] Takagi, H., Shima, J. (2015). Stress Tolerance of Baker’s Yeast During Bread-Making Processes. In Stress Biology of Yeasts and Fungi (pp. 23-42). Springer Japan.
[2]Pirsaheb, M., Rostamifar, M., Mansouri, A. M., Zinatizadeh, A. A. L., Sharafi, K. (2015). Performance of an anaerobic baffled reactor (ABR) treating high strength baker's yeast manufacturing wastewater. Journal of the Taiwan institute of chemical engineers, 47, 137-148.
[3] Kobya, M., Delipinar, S. (2008). Treatment of the baker's yeast wastewater by electrocoagulation. Journal of hazardous materials, 154(1), 1133-1140.
[4] Mischopoulou, M., Naidis, P., Kalamaras, S., Kotsopoulos, T. A., Samaras, P. (2016). Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renewable energy, 96, 1078-1085.
[5] Liang, Z., Wang, Y., Zhou, Y., Liu, H., Wu, Z. (2009). Variables affecting melanoidins removal from coagulation/flocculation. Separation and purification technology, 68(3), 382-389.
[6] Liakos, T. I., Lazaridis, N. K. (2016). Melanoidin removal from molasses effluents by dsorption. Journal of water process engineering, 10, 156-164.
[7] Tsioptsias, C., Petridis, D., Athanasakis, N., Lemonidis, I., Deligiannis, A., Samaras, P. (2015). Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis. Journal of environmental management, 164, 104-113.
[8] Tsioptsias, C., Banti, D. C., Samaras, P. (2015). Experimental study of degradation of molasses wastewater by biological treatment combined with ozonation. Journal of chemical technology and biotechnology, 91(4), 857–864.
[9] Maher, A., Sadeghi, M., Moheb, A. (2014). Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination, 352, 166- 173.
[10] Sadeghian, M., Sadeghi, M., Hesampour, M., Moheb, A. (2015). Application of response surface methodology (RSM) to optimize operating conditions during 3000 4000 5000 6000 7000 8000 9000 10000 0 5 10 15 20 25 30 35 40 45 MLSS (mg/Lit) Time (days) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 5 10 15 20 25 30 35 40 45 DO (mg/Lit) Time (days) M. J. Nosratpour et al. / Advances in Environmental 3 (2015) 105-111 111 ultrafiltration of oil-in-water emulsion. Desalination and water treatment, 55(3), 615-623.
[11] Guglielmi, G., Chiarani, D., Judd, S. J., Andreottola, G. (2007). Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment. Journal of membrane science, 289(1), 241-248.
[12] Hosseinzadeh, M., Bidhendi, G. N., Torabian, A., Mehrdadi, N. (2013). Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment. Journal of environmental health science and engineering, 11(1), 1-8.
[13] Kim, I., Choi, D. C., Lee, J., Chae, H. R., Jang, J. H., Lee, C. H., Won, Y. J. (2015). Preparation and application of patterned hollow-fiber membranes to membrane bioreactor for wastewater treatment. Journal of membrane science, 490, 190-196.
[14] Basu, S., Kaushik, A., Saranya, P., Batra, V. S., Balakrishnan, M. (2016). High strength distillery wastewater treatment by a PAC-MBR with low PAC dosage. Water science and technology, 73(5), 1104- 1111.
[15] Deowan, S. A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S. A., Gabriele, B., Figoli, A. (2016). Novel lowfouling membrane bioreactor (MBR) for industrial wastewater treatment. Journal of membrane science, 510, 524-532.
[16] Judd, S. (2008). The status of membrane bioreactor technology. Trends in biotechnology, 26(2), 109-116.
[17] Judd, S. (2010). The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier.
[18] Neoh, C. H., Noor, Z. Z., Mutamim, N. S. A., Lim, C. K. (2016). Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems. Chemical engineering journal, 283, 582-594.
[19] Sankaran, S., Khanal, S. K., Jasti, N., Jin, B., Pometto III, A. L., Van Leeuwen, J. H. (2010). Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Critical reviews in environmental science and technology, 40(5), 400-449.
[20] Machida, M., Yamada, O., Gomi, K. (2008). Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA research, 15(4), 173-183.
[21] Meng, F., Yang, F., Shi, B., Zhang, H. (2008). A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities. Separation and purification technology, 59(1), 91-100.
[22] Amiraftabi, M. S., Mostoufi, N., Hosseinzadeh, M., Mehrnia, M. R. (2014). Reduction of membrane fouling by innovative method (injection of air jet). Journal of environmental health science and engineering, 12(1), 1- 8.
[23] Huang, Z., Ong, S. L., Ng, H. Y. (2011). Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water research, 45(2), 705-713.
[24] Liang, S., Liu, C., Song, L. (2007). Soluble microbial products in membrane bioreactor operation: behaviors, characteristics, and fouling potential. Water research, 41(1), 95-101.
[25] Meng, F., Zhang, H., Yang, F., Zhang, S., Li, Y., Zhang, X. (2006). Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors. Separation and purification technology, 51(1), 95-103.
[26] Pourabdollah, M., Torkian, A., Hashemian, S. J., Bakhshi, B. (2014). A triple fouling layers perspective on evaluation of membrane fouling under different scenarios of membrane bioreactor operation. Journal of environmental health science and engineering, 12(1), 1-10.
[27] Le Clech, P., Jefferson, B., Chang, I. S., Judd, S. J. (2003). Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of membrane science, 227(1), 81-93.
[28] Wu, Z., Wang, Z., Huang, S., Mai, S., Yang, C., Wang, X., Zhou, Z. (2008). Effects of various factors on critical flux in submerged membrane bioreactors for municipal wastewater treatment. Separation and purification technology, 62(1), 56-63.
[29] Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., Olsson, G. (2012). Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination, 305, 1-11.
[30] Wef, A. A. (1998). Standard methods for the examination of water and wastewater. American public health association, Washington, DC