[1] Cushman, D. J., Driver, K. S., Ball, S. D. (2001). Risk assessment for environmental contamination: an overview of the fundamentals and application of risk assessment at contaminated sites. Canadian Journal of civil engineering, 28(S1), 155-162.
[2] Falta, R. W., Javandel, I., Pruess, K., Witherspoon, P. A. (1989). Density‐driven flow of gas in the unsaturated zone due to the evaporation of volatile organic compounds. Water resources research, 25(10), 2159-2169.
[3] Troldborg, M., Binning, P. J., Nielsen, S., Kjeldsen, P., Christensen, A. G. (2009). Unsaturated zone leaching models for assessing risk to groundwater of contaminated sites. Journal of contaminant hydrology, 105(1), 28-37.
[4] Rivett, M. O., Wealthall, G. P., Dearden, R. A., McAlary, T. A. (2011). Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of contaminant hydrology, 123(3), 130-156.
[5] Jury, W. A., Spencer, W. F., Farmer, W. (1983). Behavior assessment model for trace organics in soil: I. Model description. Journal of environmental quality, 12(4), 558-564.
[6] Shoemaker, C. A., Culver, T. B., Lion, L. W., Peterson, M. G. (1990). Analytical models of the impact of two‐phase sorption on subsurface transport of volatile chemicals. Water resources research, 26(4), 745-758.
[7] Mendoza, C. A., & Frind, E. O. (1990). Advective‐dispersive transport of dense organic vapors in the unsaturated zone: 1. Model development. Water resources research, 26(3), 379-387.
[8] Shan, C., Stephens, D. B. (1995). An analytical solution for vertical transport of volatile chemicals in the vadose zone. Journal of contaminant hydrology, 18(4), 259-277.
[9] Karapanagioti, H. K., Gaganis, P., Burganos, V. N. (2003). Modeling attenuation of volatile organic mixtures in the unsaturated zone: codes and usage. Environmental modelling & software, 18(4), 329-337.
[10] Gioia, F., Murena, F., Santoro, A. (1998). Transient evaporation of multicomponent liquid mixtures of organic volatiles through a covering porous layer. Journal of hazardous materials, 59(2), 131-144.
[11] Aelion, C. M., Bradley, P. M. (1991). Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer. Applied and environmental microbiology, 57(1), 57-63.
[12] Höhener, P., Duwig, C., Pasteris, G., Kaufmann, K., Dakhel, N., Harms, H. (2003). Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand. Journal of contaminant hydrology, 66(1), 93-115.
[13] Kartha, S. A., Srivastava, R. (2008). Effect of immobile water content on contaminant transport in unsaturated zone. Journal of hydro-environment research, 1(3), 206-215.
[14] Kuntz, D., Grathwohl, P. (2009). Comparison of steady-state and transient flow conditions on reactive transport of contaminants in the vadose soil zone. Journal of hydrology, 369(3), 225-233.
[15] Ravi, V., & Johnson, J. A. A One-Dimensional Finite Difference Vadose Zone Leaching Model.
[16] Millington, R. J. (1959). Gas diffusion in porous media. Science, 130(3367), 100-102.
[17] Falta, R. W., Pruess, K., Javandel, I., Witherspoon, P. A. (1992). Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface: 1. Numerical formulation. Water resources research, 28(2), 433-449.
[18] Mackay, D., Shiu, W. Y., Ma, K. C., Lee, S. C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC press.
[19] Bekins, B. A., Warren, E., Godsy, E. M. (1998). A comparison of zero‐order, first‐order, and monod biotransformation models. Groundwater, 36(2), 261-268.